Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage

  • Bo Wu
  • Yuanyang Zhao
  • Qinfeng Liu
  • Changlin Zhou
  • Xi Zhang
  • Jingxin LeiEmail author


Utilization of renewable biomass to prepare phase change material (PCM) that can reversibly store renewable thermal energy is of great interest. Castor oil with functional hydroxyl groups is especially attractive for the preparation of polymeric materials. In this work, a novel castor oil-based polyurethane-acrylate oligomer (COPUA) was firstly synthesized through a two-step condensation reaction. Followed by in situ polymerization of COPUA in the presence of palmitic acid (PA), a novel biomass-based form-stable PCM was prepared, in which renewable PA serves as phase change functional ingredient and castor oil-based crosslinking network acts as encapsulation material. Tailoring the mass ratio of PA and COPUA provides the ultimate encapsulation ratio (70%) of PA in form-stable PCM. The chemical structure, crystalline property, thermal property of form-stable PCM were characterized using Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry and thermogravimetric. Those results demonstrate that the prepared form-stable PCM possesses that good thermal storage capacity with the phase change enthalpy reaches 141.2 J g−1. Accelerated thermal cycling test was also performed to illustrate the thermal reliability of form-stable PCM.


Castor oil Phase change materials Palmitic acid Renewable biomass Thermal energy storage 



  1. 1.
    McKone JR, DiSalvo FJ, Abru AHD. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J Mater Chem A. 2017;5:5362–72.CrossRefGoogle Scholar
  2. 2.
    Börjesson K, Lennartson A, Moth-Poulsen K. Efficiency limit of molecular solar thermal energy collecting devices. ACS Sustain Chem Eng. 2013;1:585–90.CrossRefGoogle Scholar
  3. 3.
    Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev. 2014;39:748–64.CrossRefGoogle Scholar
  4. 4.
    Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev. 2017;68:693–706.CrossRefGoogle Scholar
  5. 5.
    Sundararajan S, Samui AB, Kulkarni PS. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A. 2017;5:18379–96.CrossRefGoogle Scholar
  6. 6.
    Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.CrossRefGoogle Scholar
  7. 7.
    Wu B, Fu W, Kong B, Hu K, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132:907–17.CrossRefGoogle Scholar
  8. 8.
    Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.CrossRefGoogle Scholar
  9. 9.
    Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, Calautit JK, Hughes BR, Zaki SA. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev. 2016;60:1470–97.CrossRefGoogle Scholar
  10. 10.
    Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.CrossRefGoogle Scholar
  11. 11.
    Zhang N, Yuan Y, Wang X, Cao X, Yang X, Hu S. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.CrossRefGoogle Scholar
  12. 12.
    Qian T, Li J, Min X, Guan W, Deng Y, Ning L. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A. 2015;3:8526–36.CrossRefGoogle Scholar
  13. 13.
    Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manag. 2008;49:718–23.CrossRefGoogle Scholar
  14. 14.
    Deng Y, Li J, Qian T, Guan W, Li Y, Yin X. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J. 2016;295:427–35.CrossRefGoogle Scholar
  15. 15.
    Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3:11624–30.CrossRefGoogle Scholar
  16. 16.
    Tang B, Wang L, Xu Y, Xiu J, Zhang S. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:1–6.CrossRefGoogle Scholar
  17. 17.
    Lian Q, Li K, Sayyed AAS, Cheng J, Zhang J. Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J Mater Chem A. 2017;5:14562–74.CrossRefGoogle Scholar
  18. 18.
    Wu B, Jiang Y, Wang Y, Zhou C, Zhang X, Lei J. Study on a PEG/epoxy shape-stabilized phase change material: preparation, thermal properties and thermal storage performance. Int J Heat Mass Transf. 2018;126:1134–42.CrossRefGoogle Scholar
  19. 19.
    Wu D, Wen W, Chen S, Zhang H. Preparation and properties of a novel form-stable phase change material based on a gelator. J Mater Chem A. 2015;3:2589–600.CrossRefGoogle Scholar
  20. 20.
    Şentürk SB, Kahraman D, Alkan C, Gökçe İ. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym. 2011;84:141–4.CrossRefGoogle Scholar
  21. 21.
    Jiang Y, Ding E, Li G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer. 2002;43:117–22.CrossRefGoogle Scholar
  22. 22.
    Kumar A, Kulkarni PS, Samui AB. Polyethylene glycol grafted cotton as phase change polymer. Cellulose. 2014;21:685–96.CrossRefGoogle Scholar
  23. 23.
    Chen C, Wang L, Huang Y. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett. 2009;63:569–71.CrossRefGoogle Scholar
  24. 24.
    Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 2010;12:1893.CrossRefGoogle Scholar
  25. 25.
    Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin J. The use of renewable feedstock in UV-curable materials: a new age for polymers and green chemistry. Prog Polym Sci. 2013;38:932–62.CrossRefGoogle Scholar
  26. 26.
    Wang Q, Chen G, Cui Y, Tian J, He M, Yang J. Castor oil based biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings. ACS Sustain Chem Eng. 2016;5:376–81.CrossRefGoogle Scholar
  27. 27.
    Ma L, Guo C, Ou R, Sun L, Wang Q, Li L. Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy Fuel. 2018;32:5453–61.CrossRefGoogle Scholar
  28. 28.
    Black M, Rawlins JW. Thiol–ene UV-curable coatings using vegetable oil macromonomers. Eur Polym J. 2009;45:1433–41.CrossRefGoogle Scholar
  29. 29.
    Chen G, Guan X, Xu R, Tian J, He M, Shen W, Yang J. Synthesis and characterization of UV-curable castor oil-based polyfunctional polyurethane acrylate via photo-click chemistry and isocyanate polyurethane reaction. Prog Org Coat. 2016;93:11–6.CrossRefGoogle Scholar
  30. 30.
    Ogunniyi DS. Castor oil: vital industrial raw material. Bioresour Technol. 2006;97:1086–91.CrossRefGoogle Scholar
  31. 31.
    Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol C. 2016;147:177–84.CrossRefGoogle Scholar
  32. 32.
    Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol C. 2017;167:109–20.CrossRefGoogle Scholar
  33. 33.
    Zeng J, Sun S, Zhou L, Chen Y, Shu L, Yu L, Zhu L, Song L, Cao Z, Sun L. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells. J Therm Anal Calorim. 2017;129:1583–92.CrossRefGoogle Scholar
  34. 34.
    Sarı A, Bicer A, Al-Ahmed A, Al-Sulaiman FA, Zahir MH, Mohamed SA. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage. Sol Energy Mater Sol C. 2018;179:353–61.CrossRefGoogle Scholar
  35. 35.
    Del Barrio EP, Godin A, Duquesne M, Daranlot J, Jolly J, Alshaer W, Kouadio T, Sommier A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energy Mater Sol C. 2017;159:560–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bo Wu
    • 1
  • Yuanyang Zhao
    • 1
  • Qinfeng Liu
    • 1
  • Changlin Zhou
    • 1
  • Xi Zhang
    • 1
  • Jingxin Lei
    • 1
    Email author
  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations