Advertisement

Thermal degradation of α-pinene using a Py–GC/MS

  • Bruno Coudour
  • Khaled ChetehounaEmail author
  • Laurent Lemée
  • Pierre Bertin
  • Jean-Pierre Garo
Article
  • 2 Downloads

Abstract

Mediterranean forest fires may be accelerated, partly due to biogenic volatile organic compounds produced by vegetation, mainly monoterpenes largely represented by α-pinene. To model the propagation of biomass combustion, it is necessary to study the flammability of the produced gas mixture, and thus, necessary to identify the emitted volatile compounds. However, thermal degradation of monoterpenes is rarely experimented above 300 °C, whereas forest fires reach higher temperatures. Thus, in this work, we experimented a 2-min pyrolysis of α-pinene at temperatures from 300 to 800 °C using a Py–GC/MS device. Less than 1% of pyrolysis products were detected at 300 and 400 °C. The pyrolysis products increased then from 14 compounds at 500 °C to 31 compounds at 800 °C. Degradation of α-pinene started with its isomerization at 500 °C. At 800 °C, alkenes detected increased as well as aromatics produced through the Diels–Alder mechanism. These results are consistent with the literature on thermal degradation of α- and β-pinene presented in our article.

Keywords

Diels–Alder Isomerization and aromatization Mediterranean forest fires Monoterpenes and aromatics Oxidative thermal degradation Py–GC/MS of α-pinene 

Notes

Acknowledgements

The present study was founded by the French Ministry of Higher Education, Research and Innovation who is gratefully acknowledged. The authors gratefully acknowledge Dr. Axel Cablé for his help in the review of the present paper.

References

  1. 1.
    Dewick PM. The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep. 2002;16:97.CrossRefGoogle Scholar
  2. 2.
    Owen SM, et al. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ. 2001;35:5393–409.CrossRefGoogle Scholar
  3. 3.
    Barboni T, Cannac M, Pasqualini V, Simeoni A, Leoni E, Chiaramonti N. Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region. Int J Wildland Fire. 2010;2010(19):606–12.CrossRefGoogle Scholar
  4. 4.
    Evtyugina M, et al. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmos Environ. 2013;64:339–48.CrossRefGoogle Scholar
  5. 5.
    Chatelon FJ. Generalized blaze flash, a “flashover”. Behavior for forest fires—analysis from the firefighter’s point of view. Open J For. 2014;4:547–57.Google Scholar
  6. 6.
    Chetehouna K et al. Chapter 3. In: Volatile organic compounds: emission, pollution and control. Nova Science Publishers; 2014.Google Scholar
  7. 7.
    Barboni T. Caractérisation chimique d’un hybride de clémentine et du myrte commun. Etude de cas d’embrasement généralisé éclair par la détermination des COVb. Analyse des fumées issues de la combustion des végétaux. Thèse de doctorat de l’Université de Corse; 2006.Google Scholar
  8. 8.
    Courty L, Chetehouna K, Lemee L, Fernandez-Pello C, Garo J-P. Biogenic volatile organic compounds (BVOCs) emissions of representative forest vegetation at elevated temperatures and their potential contribution in accelerating forest fires. J Fire Sci. 2014;32(5):459–79.CrossRefGoogle Scholar
  9. 9.
    Noma Y, Asakawa Y. Biotransformation of monoterpenoids by microorganisms, insects, and mammals. In: Baser KHC, Buchbauer G, editors. Handbook of essential oils: science, technology, and applications. Boca Raton: CRC Press; 2010. p. 585–736.Google Scholar
  10. 10.
    Spanke J, Rannik U, Forkel R, Nigge W, Hoffmann T. Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling. Tellus. 2001;53B:406–22.CrossRefGoogle Scholar
  11. 11.
    Hawkins JE, Eriksen WT. Physical and thermodynamic properties of terpenes. II. The heats of combustion of some terpene hydrocarbons. Contribution from the Department of chemistry of the University of Florida; 1953.Google Scholar
  12. 12.
    Fujisawa M, Matsushita T, Kimura T. Excess molar heat capacities of ((R)-(+)-α-pinene + (S)-(−)-α-pinene) at temperatures between 293.15–308.15 K. J Therm Anal Calorim. 2005;81:137–9.CrossRefGoogle Scholar
  13. 13.
    Courty L, Chetehouna K, Halter F, Foucher F, Garo J-P, Mounaïm-Rousselle C. Flame speeds of α-pinene/air and limonene/air mixtures involved in accelerating forest fires. Combust Sci Technol. 2012;184(10–11):1397–411.CrossRefGoogle Scholar
  14. 14.
    Rudz S, Chetehouna K, Strozzi C, Gillard P. Minimum ignition energy measurements for α-pinene/air mixtures. Combust Sci Technol. 2014;186:1–10.CrossRefGoogle Scholar
  15. 15.
    Mcgraw G, Hemingway RW, Ingram LL, Canady CS, McGraw WB. Thermal degradation of terpenes: camphene, ∆3-carene, limonene, and α-terpinene. Environ Sci Technol. 1999;33:4029–33.CrossRefGoogle Scholar
  16. 16.
    Gajewski JJ, et al. The kinetics, stereochemistry, and deuterium isotope effects in the α-pinene pyrolysis. Evidence for incursion of multiple conformations of a diradical. Tetrahedron. 2002;58:6943–50.CrossRefGoogle Scholar
  17. 17.
    Kolicheski MB, et al. Synthesis of myrcene by pyrolysis of b-pinene: analysis of decomposition reactions. J Anal Appl Pyrol. 2007;80:92.CrossRefGoogle Scholar
  18. 18.
    Stolle A, Ondruschka B. An effort to generalise the thermal isomerization of 6,6-dimethylbicyclo[3.1.1]heptanes and 6,6-dimethylbicyclo[3.1.1]heptenes: comparative pyrolysis of pinane, a-pinene, and b-pinene. J Anal Appl Pyrol. 2009;85:252–9.CrossRefGoogle Scholar
  19. 19.
    Neuenschwander U, Guignard F, Hermans I. Mechanism of the aerobic oxidation of α-pinene. Chem Sustain Chem. 2010;3(1):75–84.CrossRefGoogle Scholar
  20. 20.
    Costa CC, Johnstone RAW, Whittaker D. Catalysis of gas and liquid phase ionic and radical rearrangements of α- and β-pinene by metal(IV) phosphate polymers. J Mol Catal A Chem. 1996;104:251–9.CrossRefGoogle Scholar
  21. 21.
    Burwell RL. The mechanism of the pyrolyses of pinenes. J Am Chem Soc. 1951;73(9):4461–2.CrossRefGoogle Scholar
  22. 22.
    Gwyn JE. “Universal” yield models for the steam pyrolysis of hydrocarbons to olefins. Fuel Process Technol. 2001;70:1–7.CrossRefGoogle Scholar
  23. 23.
    Erman WE. Chapter 10. In: Gassman PG, editor. Chemistry of the monoterpenes. Part B. New York: Marcel Dekker; 1985. p. 929.Google Scholar
  24. 24.
    Runckel WJ, Goldblatt LA. Inhibition of myrcene polymerization during storage. J Ind Eng Chem. 1946;38:749.CrossRefGoogle Scholar
  25. 25.
    Staudinger H. From organic chemistry to macromolecules. New York: Wiley; 1970. p. 43.Google Scholar
  26. 26.
    Albright LF, Crynes BL, Corcoran WH. Pyrolysis: theory and industrial practice. New York: Academic Press; 1983. p. 482.Google Scholar
  27. 27.
    Stolle A, Ondruschka B. Comment to the paper “Synthesis of myrcene by pyrolysis of β-pinene: analysis of decomposition reactions” by M.B. Kolicheski et al. [J. Anal. Appl. Pyrol. 80 (2007) 92–100]. J Anal Appl Pyrol. 2008;81:136–8.CrossRefGoogle Scholar
  28. 28.
    Pines H, Ryer J. Studies in the terpene series. XXIII. 1,2 pyrolysis of d-limonene and of related hydrocarbons. Mechanisms of pyrolysis. J Am Chem Soc. 1955;77:4370.CrossRefGoogle Scholar
  29. 29.
    Stolle A, Brauns C, Nüchter M, Ondruschka B, Bonrath W, Findeisen M. Thermal behaviour of selected C10H16 monoterpenes. Eur J Organ Chem. 2006;2006:3317.CrossRefGoogle Scholar
  30. 30.
    Chetehouna K, Belayachi N, Lemée L, Hoxha D, Rengel B. Pyrolysis gases released during the thermal degradation 4 of insulation materials based on straw fibers. J Therm Anal Calorim. 2015;122:1417–22.CrossRefGoogle Scholar
  31. 31.
    Chen X, Xie J, Mei S, He F, Yang H. RDF pyrolysis by TG-FTIR and Py–GC/MS and combustion in a double furnaces reactor. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7694-9.Google Scholar
  32. 32.
    Chetehouna K, Grange N, Gascoin N, Lemée L, Reynaud I, Senave S. Release and flammability evaluation of pyrolysis gases from carbon-based composite materials undergoing fire conditions. J Anal Appl Pyrol. 2018;134:136–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bruno Coudour
    • 1
  • Khaled Chetehouna
    • 2
    Email author
  • Laurent Lemée
    • 3
  • Pierre Bertin
    • 1
  • Jean-Pierre Garo
    • 1
  1. 1.Institut P’ - UPR 3346 CNRS, ENSMAUniv. PoitiersFuturoscope ChasseneuilFrance
  2. 2.INSA-CVL, PRISMEUniv. Orléans - EA 4229BourgesFrance
  3. 3.IC2MP - UMR CNRS 7285Université de PoitiersPoitiers CedexFrance

Personalised recommendations