Advertisement

Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend

  • Anna Raffaela de Matos CostaEmail author
  • Raquel Marques Santos
  • Edson Noriyuki Ito
  • Laura Hecker de Carvalho
  • Eduardo Luís Canedo
Article
  • 20 Downloads

Abstract

Melt and cold crystallization characteristics of poly(3-hydroxybutyrate) (PHB) and poly(butylene adipate-co-terephthalate) (PBAT), two biodegradable polyesters of current industrial interest, as well as a PHB/PBAT blend, were investigated by nonisothermal tests of differential scanning calorimetry over a range of cooling/heating rates ranging between 2 and 64 °C min−1. Although more difficult to study the crystallization under isothermal conditions, the quantitative evaluation of nonisothermal crystallization is required to understand and model industrial processes, which are conducted under nonisothermal conditions. While PBAT crystallizes completely during cooling, PHB and the PHB/PBAT blend show incomplete crystallization from the melt, the process being completed during the reheating stage. Notwithstanding the different crystallization behavior, crystallinity levels and melting points of PHB, PBAT and the blend have virtually identical melt crystallization temperatures, due perhaps to differences in the nucleating efficiency of the stereoregular homopolymer PHB and the random copolymer PBAT. These findings may be of enough interest for process engineers designing and controlling operations.

Keywords

Polymer blends and alloys Biodegradable polymers Thermal properties PHB PBAT 

Notes

Acknowledgements

The authors wish to thank PHB Industrial (Serrana SP, Brazil) for supplying PHB free of charge and the Conselho Nacional de de Pesquisa (CNPq) e Coordenação de Aperfeiçoamento de Pessoal Superior (CAPES), Brazil for financial support.

References

  1. 1.
    Doi Y. Microbial polyesters. 3ª ed. New York: Wiley-VCH; 1990.Google Scholar
  2. 2.
    Hocking PJ, Marchessault RH. Biopolymers. In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall/Backie; 1994. p. 1–154.Google Scholar
  3. 3.
    Hodzic A. Bacterial polyester-based biocomposites: a review. In: Mohanty AK, Misra M, Drzal LT, editors. Natural fibers, biopolymers, and biocomposites. Boca Rato: Taylor & Francis/CRC Press; 2005. p. 597–616.Google Scholar
  4. 4.
    Di Lorenzo ML, Righetti MC. Evolution of crystal and amorphous fractions of poly[(R)-3-hydroxybutyrate] upon storage. J Therm Anal Calorim. 2012.  https://doi.org/10.1007/s10973-012-2734-3.Google Scholar
  5. 5.
    Yoshie N, Nakasato K, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y. Effect of low molecular weight additives on enzymatic degradation of poly (3-hydroxybutyrate). Polymer. 2000.  https://doi.org/10.1016/s0032-3861(99)00547-9.Google Scholar
  6. 6.
    Gunaratne LMWK, Shanks RA. Melting and thermal history of poly (hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta. 2000.  https://doi.org/10.1016/j.tca.2005.01.060.Google Scholar
  7. 7.
    El-Hadi A, Schnabel R, Straube E, Müller G, Henning S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test. 2002.  https://doi.org/10.1016/s0142-9418(01)00142-8.Google Scholar
  8. 8.
    Sridewi N, Bhubalan K, Sudesh K. Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab. 2006.  https://doi.org/10.1016/j.polymdegradstab.2006.08.027.Google Scholar
  9. 9.
    Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ. Products. Biopolymers. Polyesters. Applications and Commercial. In: Steinbüchel YDA, editor. Biodegradable aliphatic-aromatic polyesters. Ecoflex. New York: Wiley; 2002. p. 299 ss.Google Scholar
  10. 10.
    Parra DF, Rosa DS, Rezende J, Ponce P, Lugão AB. Biodegradation of γ-irradiated poly 3-hydroxybutyrate (PHB) films blended with poly (ethyleneglycol). J Polym Environ. 2011.  https://doi.org/10.1007/s10924-011-0353-x.Google Scholar
  11. 11.
    Al-Itry R, Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab. 2012.  https://doi.org/10.1016/j.polymdegradstab.2012.06.028.Google Scholar
  12. 12.
    Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC. PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C. 2012.  https://doi.org/10.1016/j.msec.2012.04.005.Google Scholar
  13. 13.
    Groeninckx G, Harrats C, Vanneste M, Everaert V. Polymer blends handbook. In: Utacki LA, Wilkie CA, editors. Crystallization, micro- and nano-structure, and melting behavior of polymer blends. New York: Springer; 2014. p. 291–446.Google Scholar
  14. 14.
    Silva IDS, Jaques NG, Barbosa Neto MC, Agrawal P, Ries A, Wellen RMR, Canedo EL. Melting and crystallization of PHB/ZnO compounds. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6749-7.Google Scholar
  15. 15.
    Cipriano PB. Preparation and characterization of PHB/mesocarp of babassu compounds. MSc Thesis, UFCG, Brazil, 2012.Google Scholar
  16. 16.
    Wellen RMR, Canedo EL, Rabello MS. Melting and crystallization of PHB/carbon black compounds: effect of heating and cooling cycles on phase transition. J Mater Res. 2015.  https://doi.org/10.1557/jmr.2015.287.Google Scholar
  17. 17.
    Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH. Nonisothermal melt crystallization of PHB/babassu compounds. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5514-7.Google Scholar
  18. 18.
    Costa ARM, Ito EN, Carvalho LH, Canedo EL. Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture. Polímeros 2018.Google Scholar
  19. 19.
    Barham PJ, Keller A, Otun EL, Holmes PA. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984.  https://doi.org/10.1007/bf01026954.Google Scholar
  20. 20.
    Avella M, Martuscelli E, Orsello G, Raimo M, Pascucci B. Poly(3-hydroxybutyrate)/poly(methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer. 1997.  https://doi.org/10.1016/s0032-3861(97)00166-3.Google Scholar
  21. 21.
    Gan ZH, Kuwabara K, Yamamoto M, Abe H, Doi Y. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters. Polym Degrad Stab. 2004.  https://doi.org/10.1016/s0141-3910(03)00274-x.Google Scholar
  22. 22.
    Wellen RMR, Rabello MS, Fechine GJM, Canedo EL. Melting and crystallization of poly (3-hydroxybutyrate). Effect of heating/cooling rates on phase transformation. Polímeros. 2015.  https://doi.org/10.1590/0104-1428.1961.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Anna Raffaela de Matos Costa
    • 1
    Email author
  • Raquel Marques Santos
    • 2
  • Edson Noriyuki Ito
    • 3
  • Laura Hecker de Carvalho
    • 4
  • Eduardo Luís Canedo
    • 4
  1. 1.Programa de Pós-Graduação em Ciência e Engenharia de MateriaisUniversidade Federal de Rio Grande do NorteNatalBrazil
  2. 2.Programa de Pós-Graduação em Engenharia de ProcessosUniversidade Federal de Campina GrandeCampina GrandeBrazil
  3. 3.Departamento de Engenharia de MateriaisUniversidade Federal de Rio Grande do NorteNatalBrazil
  4. 4.Departamento de Engenharia de MateriaisUniversidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations