A review on the application of differential scanning calorimetry (DSC) to petroleum products

Wax crystallization study and structural analysis
  • Milad Ahmadi KhoshooeiEmail author
  • Farhad Fazlollahi
  • Yadollah Maham
  • Azfar Hassan
  • Pedro Pereira-Almao


The application of DSC to oil field includes characterization and phase behavior study of crude oils and their fractions, developing structural and morphological fingerprint of petroleum fluids and wax crystallization study of crudes. Also DSC can be used to study kinetics of pyrolysis, combustion and oxidation of crudes. In this study, microstructural analysis and wax crystallization of crudes are critically reviewed and the leading research works in each field are comprehensively integrated to provide an instructive encyclopedia for future studies. The challenges and opportunities to improve in every section are discussed in detail to address the potential hindrances of using DSC and tackle hesitance for future use of the technique. The integrative approach not only covers the key outcomes of different studies, but also allows one to construct novel experiments with implementing connected researches in the past. In addition, possibility of linking DSC with other methods in order to either improve or broaden the applicability of the technique is overviewed and elaborated. Different operating parameters in using DSC including thermal scanning program, pressure, initial conditions, constant heating/cooling rate, type of thermal program effect and raw data analysis are carefully discussed and the effect of each parameter on the outcome of the studies is systematically expounded. This comprehensive and integrative study shows that although the application of DSC is mature in some fields, its precision is at infancy and developments such as modulated thermal programs can vastly enhance its applicability and accuracy at the same time.


DSC Structural study Wax precipitation Temperature scanning rate Modulated temperature program 



This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.


  1. 1.
    Létoffé JM, Claudy P, Kok MV, Garcin M, Volle JL. Crude oils: characterization of waxes precipitated on cooling by d.s.c. and thermomicroscopy. Fuel. 1995;74:810–7.CrossRefGoogle Scholar
  2. 2.
    Kok MV. Use of thermal equipment to evaluate crude oils. Thermochim Acta. 1993;214:315–24.CrossRefGoogle Scholar
  3. 3.
    Giavarini C, Pochetti F. Characterization of petroleum products by DSC analysis. J Therm Anal. 1973;5:83–94.CrossRefGoogle Scholar
  4. 4.
    Castro LV, Vazquez F. Fractionation and characterization of mexican crude oils. Energy Fuels. 2009;23:1603–9.CrossRefGoogle Scholar
  5. 5.
    Mothé MG, Perin M, Mothé CG. Comparative thermal study of heavy crude oils by DSC. Pet Sci Technol. 2016;34:314–20.CrossRefGoogle Scholar
  6. 6.
    Masson J-F, Bundalo-Perc S. Calculation of smoothing factors for the comparison of DSC results. J Therm Anal Calorim. 2007;90:639–43.CrossRefGoogle Scholar
  7. 7.
    Thermal Kök M. Analysis applications in fossil fuel science. Literature survey. J Therm Anal Calorim. 2002;68:1061–77.CrossRefGoogle Scholar
  8. 8.
    Kök M. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.CrossRefGoogle Scholar
  9. 9.
    Wesołowski M. Thermal analysis of petroleum products. Thermochim Acta. 1981;46:21–45.CrossRefGoogle Scholar
  10. 10.
    Rustschev DD. Application of thermal analysis for investigating liquid fuels, petroleum- and coke-chemical products. Thermochim Acta. 1990;168:261–71.CrossRefGoogle Scholar
  11. 11.
    Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.CrossRefGoogle Scholar
  12. 12.
    Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40:931–9.CrossRefGoogle Scholar
  13. 13.
    Simon SL. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta. 2001;374:55–71.CrossRefGoogle Scholar
  14. 14.
    Masson J-F, Polomark GM. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta. 2001;374:105–14.CrossRefGoogle Scholar
  15. 15.
    Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Features of colloidal disperse structure formation in petroleum bitumen. Colloid J. 2016;78:712–6.CrossRefGoogle Scholar
  16. 16.
    Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Dynamics of formation of asphalt microstructure according to modulated differential scanning calorimetry data. Pet Chem. 2017;57:1002–6.CrossRefGoogle Scholar
  17. 17.
    Masson J-F, Polomark GM, Collins P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels. 2002;16:470–6.CrossRefGoogle Scholar
  18. 18.
    Masson J-F, Collins P, Polomark G. Steric hardening and the ordering of asphaltenes in bitumen. Energy Fuels. 2005;19:120–2.CrossRefGoogle Scholar
  19. 19.
    Masson J-F, Polomark GM, Bundalo-Perc S, Collins P. Melting and glass transitions in paraffinic and naphthenic oils. Thermochim Acta. 2006;440:132–40.CrossRefGoogle Scholar
  20. 20.
    Dreezen G, Groeninckx G, Swier S, Van Mele B. Phase separation in miscible polymer blends as detected by modulated temperature differential scanning calorimetry. Polymer. 2001;42:1449–59.CrossRefGoogle Scholar
  21. 21.
    Frolov IN, Bashkirceva NY, Ziganshin MA, Okhotnikova ES, Firsin AA. The steric hardening and structuring of paraffinic hydrocarbons in bitumen. Pet Sci Technol. 2016;34:1675–80.CrossRefGoogle Scholar
  22. 22.
    Yu X, Granados-Focil S, Tao M, Burnham NA. Time- and composition-dependent evolution of distinctive microstructures in bitumen. Energy Fuels. 2018;32:67–80.CrossRefGoogle Scholar
  23. 23.
    Redelius P, Soenen H. Relation between bitumen chemistry and performance. Fuel. 2015;140:34–43.CrossRefGoogle Scholar
  24. 24.
    Raki L, Masson J-F, Collins P. Rapid bulk fractionation of maltenes into saturates, aromatics, and resins by flash chromatography. Energy Fuels. 2000;14:160–3.CrossRefGoogle Scholar
  25. 25.
    Speight JG. The chemistry and technology of petroleum. 5th ed. Boca Raton: CRC Press; 2014.Google Scholar
  26. 26.
    Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Formation of phase composition of petroleum bitumen according to data of temperature modulated differential scanning calorimetry. J Therm Anal Calorim. 2018;131:555–60.CrossRefGoogle Scholar
  27. 27.
    ASTM D2007-11. Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method. ASTM International, West Conshohocken, 2016.Google Scholar
  28. 28.
    Lesueur D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci. 2009;145:42–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Frolov IN, Firsin AA. Role of paraffinic hydrocarbons in the formation of the dispersed structure of petroleum asphalt. Chem Technol Fuels Oils. 2016;52:600–5.CrossRefGoogle Scholar
  30. 30.
    Robustillo MD, Coto B, Martos C, Espada JJ. Assessment of different methods to determine the total wax content of crude oils. Energy Fuels. 2012;26:6352–7.CrossRefGoogle Scholar
  31. 31.
    Cheung CY, Cebon D. Deformation mechanisms of pure bitumen. J Mater Civ Eng Am Soc Civil Eng. 1997;9:117–29.CrossRefGoogle Scholar
  32. 32.
    Claudy PM, Létoffé JM, Martin D, Planche JP. Thermal behavior of asphalt cements. Thermochim Acta. 1998;324:203–13.CrossRefGoogle Scholar
  33. 33.
    Chambrion P, Bertau R, Ehrburger P. Characterization of bitumen by differential scanning calorimetry. Fuel. Elsevier. 1996;75:144–8.CrossRefGoogle Scholar
  34. 34.
    Hourston DJ, Schäfer F-U, Gradwell MHS, Song M. TMXDI-based poly(ether urethane)/polystyrene interpenetrating polymer networks: 2. Tg behaviour, mechanical properties and modulus-composition studies. Polymer. 1998;39:5609–17.CrossRefGoogle Scholar
  35. 35.
    Hourston DJ, Schäfer F-U, Bates JS, Gradwell MHS. TMXDI-based poly(ether urethane)/polystyrene interpenetrating polymer networks: 1. Morphology and thermal properties. Polymer. 1998;39:3311–20.CrossRefGoogle Scholar
  36. 36.
    Hourston DJ, Song M, Schafer F-U, Pollock HM, Hammiche A. Modulated differential scanning calorimetry: 13. Analysis of morphology of poly(ethyl methacrylate)/polyurethane interpenetrating polymer networks. Thermochim Acta. 1998;324:109–21.CrossRefGoogle Scholar
  37. 37.
    Cantor AS. Glass transition temperatures of hydrocarbon blends: adhesives measured by differential scanning calorimetry and dynamic mechanical analysis. J Appl Polym Sci. 2000;77:826–32.CrossRefGoogle Scholar
  38. 38.
    Fulem M, Becerra M, Hasan MDA, Zhao B, Shaw JM. Phase behaviour of Maya crude oil based on calorimetry and rheometry. Fluid Phase Equilib. Elsevier. 2008;272:32–41.CrossRefGoogle Scholar
  39. 39.
    Frolov IN, Okhotnikova ES, Ziganshin MA, Firsin AA. Thermodynamic and thermokinetic processes of formation disperse structures of bitumen. Pet Sci Technol. 2017;35:2277–82.CrossRefGoogle Scholar
  40. 40.
    Peramanu S, Pruden BB, Rahimi P. Molecular weight and specific gravity distributions for athabasca and cold lake bitumens and their saturate, aromatic, resin, and asphaltene fractions. Ind Eng Chem Res. 1999;38:3121–30.CrossRefGoogle Scholar
  41. 41.
    Wunderlich B, Okazaki I, Ishikiriyama K, Boller A. Melting by temperature-modulated calorimetry. Thermochim Acta. 1998;324:77–85.CrossRefGoogle Scholar
  42. 42.
    Wunderlich B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim Acta. 1999;340–341:37–52.CrossRefGoogle Scholar
  43. 43.
    Claudy P, Letoffe JM, King GN, Planche JP, Brule B. Characterization of paving asphalts by differential scanning calorimetry. Fuel Sci Technol Int. 1991;9:71–92.CrossRefGoogle Scholar
  44. 44.
    Coto B, Martos C, Espada JJ, Robustillo MD, Peña JL. Analysis of paraffin precipitation from petroleum mixtures by means of DSC: iterative procedure considering solid–liquid equilibrium equations. Fuel. 2010;89:1087–94.CrossRefGoogle Scholar
  45. 45.
    Singh P, Venkatesan R, Fogler HS, Nagarajan N. Formation and aging of incipient thin film wax-oil gels. AIChE J. 2000;46:1059–74.CrossRefGoogle Scholar
  46. 46.
    Coutinho JAP, Daridon J-L. Low-pressure modeling of wax formation in crude oils. Energy Fuels. 2001;15:1454–60.CrossRefGoogle Scholar
  47. 47.
    Coutinho JAP, Daridon J-L. The limitations of the cloud point measurement techniques and the influence of the oil composition on its detection. Pet Sci Technol. 2005;23:1113–28.CrossRefGoogle Scholar
  48. 48.
    Duan J, Deng S, Xu S, Liu H, Chen M, Gong J. The effect of gas flow rate on the wax deposition in oil-gas stratified pipe flow. J Pet Sci Eng. 2018;162:539–47.CrossRefGoogle Scholar
  49. 49.
    Currell BR, Robinson B. Characterization and analysis of waxes by differential thermal analysis. Talanta. 1967;14:421–4.CrossRefPubMedGoogle Scholar
  50. 50.
    Lange J, Jochinke H. Kennzeichnung von Wachsen durch differential-thermo-analyse. Fette, Seifen, Anstrichm. 1965;67:89–94.CrossRefGoogle Scholar
  51. 51.
    Kok MV, Létoffé J-M, Claudy P, Martin D, Garcin M, Volle J-L. Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry. Fuel. 1996;75:787–90.CrossRefGoogle Scholar
  52. 52.
    Vieira LC, Buchuid MB, Lucas EF. Effect of pressure on the crystallization of crude oil waxes. I. Selection of test conditions by microcalorimetry. Energy Fuels. 2010;24:2208–12.CrossRefGoogle Scholar
  53. 53.
    Paiva FL, Calado VMA, Marchesini FH. On the use of modulated temperature differential scanning calorimetry to assess wax crystallization in crude oils. Fuel. 2017;202:216–26.CrossRefGoogle Scholar
  54. 54.
    Matricarde Falleiro RM, Akisawa Silva LY, Meirelles AJA, Krähenbühl MA. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique. Thermochim Acta. 2012;547:6–12.CrossRefGoogle Scholar
  55. 55.
    Khoshooei MA, Sharp D, Maham Y, Afacan A, Dechaine GP. A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC). Thermochim Acta. 2018;659:232–41.CrossRefGoogle Scholar
  56. 56.
    Gimzewski E, Audley G. Monitoring wax crystallisation in diesel using differential scanning calorimetry (DSC) and microcalorimetry. Thermochim Acta. 1993;214:149–55.CrossRefGoogle Scholar
  57. 57.
    Inaba H. Nano-watt stabilized DSC and its applications. J Therm Anal Calorim. 2005;79:605–13.CrossRefGoogle Scholar
  58. 58.
    Wang S, Tozaki K-I, Hayashi H, Inaba H, Yamamoto H. Observation of multiple phase transitions in some even n-alkanes using a high resolution and super-sensitive DSC. Thermochim Acta. 2006;448:73–81.CrossRefGoogle Scholar
  59. 59.
    Wang S, Tozaki K, Hayashi H, Hosaka S, Inaba H. Observation of multiple phase transitions in n-C22H46 using a high resolution and super-sensitive DSC. Thermochim Acta. 2003;408:31–8.CrossRefGoogle Scholar
  60. 60.
    Tozaki K, Inaba H, Hayashi H, Quan C, Nemoto N, Kimura T. Phase transitions of n-C32H66 measured by means of high resolution and super-sensitive DSC. Thermochim Acta. 2003;397:155–61.CrossRefGoogle Scholar
  61. 61.
    Ludwig FJ. Analysis of microcrystalline and paraffin waxes by means of infrared spectra in the molten state. Anal Chem. 1965;37:1737–41.CrossRefGoogle Scholar
  62. 62.
    Hennessy AJ, Neville A, Roberts KJ. An examination of additive-mediated wax nucleation in oil pipeline environments. J Cryst Growth. 1999;198–199:830–7.CrossRefGoogle Scholar
  63. 63.
    Hammami A, Mehrotra AK. Thermal behaviour of polymorphic n-alkanes: effect of cooling rate on the major transition temperatures. Fuel. 1995;74:96–101.CrossRefGoogle Scholar
  64. 64.
    Mazee WM. On the properties of paraffin wax in the solid state. J Inst Pet. 1949;35:97–102.Google Scholar
  65. 65.
    Craig RG, Powers JM, Peyton FA. Analytical calorimetry: differential thermal analysis and calorimetry of waxes. In: Johnson JF, editor. Porter RS. Boston: Springer, US; 1968. p. 157–66.Google Scholar
  66. 66.
    Bucaram SM. An improved paraffin inhibitor. J Pet Technol. 1967;19:150–6.CrossRefGoogle Scholar
  67. 67.
    Zaky MT, Mohamed NH. Influence of low-density polyethylene on the thermal characteristics and crystallinity of high melting point macro- and micro-crystalline waxes. Thermochim Acta. 2010;499:79–84.CrossRefGoogle Scholar
  68. 68.
    Stank J, Mullay J. Analysis of wax/oil mixtures using DSC. Thermochim Acta. 1986;105:9–17.CrossRefGoogle Scholar
  69. 69.
    Flaherty B. Characterisation of waxes by differential scanning calorimetry. J Chem Technol Biotechnol. 1971;21:144–8.Google Scholar
  70. 70.
    ASTM D4419-90. Standard test method for measurement of transition temperatures of petroleum waxes by differential scanning calorimetry (DSC). ASTM International, 2015.Google Scholar
  71. 71.
    Srivastava SP, Handoo J, Agrawal KM, Joshi GC. Phase-transition studies in n-alkanes and petroleum-related waxes-A review. J Phys Chem Solids. 1993;54:639–70.CrossRefGoogle Scholar
  72. 72.
    Handoo J, Srivastava SP, Agrawal KM, Joshi GC. Thermal properties of some petroleum waxes in relation to their composition. Fuel. 1989;68:1346–8.CrossRefGoogle Scholar
  73. 73.
    ASTM D721-17. Standard test method for oil content of petroleum waxes. ASTM International. 2017.Google Scholar
  74. 74.
    Chen J, Zhang J, Li H. Determining the wax content of crude oils by using differential scanning calorimetry. Thermochim Acta. 2004;410:23–6.CrossRefGoogle Scholar
  75. 75.
    Kumar S, Agrawal KM, Khan HU, Sikora A. Study of phase transition in hard microcrystalline waxes and wax blends by differential scanning calorimetry. Pet Sci Technol. 2004;22:337–45.CrossRefGoogle Scholar
  76. 76.
    Drotloff H, Möller M. On the phase transitions of cycloalkanes. Thermochim Acta. 1987;112:57–62.CrossRefGoogle Scholar
  77. 77.
    Drotloff H, Emeis D, Waldron RF, Möller M. Chain folding and mesomorphic states of cycloalkanes. Polymer. 1987;28:1200–6.CrossRefGoogle Scholar
  78. 78.
    Srivastava SP, Tandon RS, Pandey DC, Madhwal DC, Goyal SK. Phase transitions in petroleum waxes: correlation with properties. Fuel. 1993;72:1345–9.CrossRefGoogle Scholar
  79. 79.
    Létoffé JM, Claudy P, Garcin M, Volle JL. Evaluation of crystallized fractions of crude oils by differential scanning calorimetry: correlation with gas chromatography. Fuel. 1995;74:92–5.CrossRefGoogle Scholar
  80. 80.
    Kök MV, Letoffe JM, Claudy P. Comparative methods in the determination of wax content and pour points of crude oils. J Therm Anal Calorim. 2007;90:827–31.CrossRefGoogle Scholar
  81. 81.
    Young PH, Dollimore D, Schall CA. Thermal analysis of solid-solid interactions in binary mixtures of alkylcyclohexanes using DSC. J Therm Anal Calorim. 2000;62:163–71.CrossRefGoogle Scholar
  82. 82.
    Hipeaux JC, Born M, Durand JP, Claudy P, Létoffé JM. Physico-chemical characterization of base stocks and thermal analysis by differential scanning calorimetry and thermomicroscopy at low temperature. Thermochim Acta. 2000;348:147–59.CrossRefGoogle Scholar
  83. 83.
    Petitjean D, Schmitt JF, Laine V, Bouroukba M, Cunat C, Dirand M. Presence of isoalkanes in waxes and their influence on their physical properties. Energy Fuels. 2008;22:697–701.CrossRefGoogle Scholar
  84. 84.
    Petitjean D, Schmitt JF, Laine V, Cunat C, Dirand M. Influence of the alkane molar distribution on the physical properties of synthetic waxes. Energy Fuels. 2010;24:3028–33.CrossRefGoogle Scholar
  85. 85.
    Turner WR. Normal alkanes. Ind Eng Chem Prod Res Dev. 1971;10:238–60.CrossRefGoogle Scholar
  86. 86.
    Dirand M, Chevallier V, Provost E, Bouroukba M, Petitjean D. Multicomponent paraffin waxes and petroleum solid deposits: structural and thermodynamic state. Fuel. 1998;77:1253–60.CrossRefGoogle Scholar
  87. 87.
    Srivastava SP, Butz T, Oschmann H-J, Rahimian I. Study of the temperature and enthalpy of thermally induced phase-transitions in n-alkanes, their mixtures and fischer-tropsch waxes. Pet Sci Technol. 2000;18:493–518.CrossRefGoogle Scholar
  88. 88.
    Khan AR, Mahto V, Fazal SA, Laik S. Studies of wax deposition onset in the case of Indian crude oil. Pet Sci Technol. 2008;26:1706–15.CrossRefGoogle Scholar
  89. 89.
    Edwards Y, Isacsson U. Wax in bitumen. Road Mater Pavement Des. 2005;6:281–309.CrossRefGoogle Scholar
  90. 90.
    Piroozian A, Hemmati M, Ismail I, Manan MA, Bayat AE, Mohsin R. Effect of emulsified water on the wax appearance temperature of water-in-waxy-crude-oil emulsions. Thermochim Acta. 2016;637:132–42.CrossRefGoogle Scholar
  91. 91.
    Sun G, Li C, Yang F, Yao B, Xiao Z. Experimental investigation on the gelation process and gel structure of water-in-waxy crude oil emulsion. Energy Fuels. 2017;31:271–8.CrossRefGoogle Scholar
  92. 92.
    Li H, Gong J. The effect of pressure on wax disappearance temperature and wax appearance temperature of water cut crude oil. Beijing: International Society of Offshore and Polar Engineers; 2010. p. 92–6.Google Scholar
  93. 93.
    Ji H-Y, Tohidi B, Danesh A, Todd AC. Wax phase equilibria: developing a thermodynamic model using a systematic approach. Fluid Phase Equilib. 2004;216:201–17.CrossRefGoogle Scholar
  94. 94.
    Pauly J, Daridon J-L, Sansot J-M, Coutinho JAP. The pressure effect on the wax formation in diesel fuel. Fuel. 2003;82:595–601.CrossRefGoogle Scholar
  95. 95.
    Li Z, Firoozabadi A. Modeling asphaltene precipitation by n-alkanes from heavy oils and bitumens using cubic-plus-association equation of state. Energy Fuels. 2010;24:1106–13.CrossRefGoogle Scholar
  96. 96.
    Kutcherov V, Chernoutsan A. Crystallization and glass transition in crude oils and their fractions at high pressure. Int J Thermophys. 2006;27:474–85.CrossRefGoogle Scholar
  97. 97.
    Kutcherov V, Lundin A, Ross RG, Anisimov M, Chernoutsan A. Glass transition in viscous crude oils under pressure. Int J Thermophys. 1994;15:165–76.CrossRefGoogle Scholar
  98. 98.
    Kutcherov V. Glass transition in crude oils under pressure. Int J Thermophys. 2006;27:467–73.CrossRefGoogle Scholar
  99. 99.
    Juyal P, Cao T, Yen A, Venkatesan R. Study of live oil wax precipitation with high-pressure micro-differential scanning calorimetry. Energy Fuels. 2011;25:568–72.CrossRefGoogle Scholar
  100. 100.
    Kutcherov V, Chernoutsan A, Brazhkin V. Crystallization and glass transition in crude oils and their fractions at atmospheric and high pressures. J Mol Liq. 2017;241:428–34.CrossRefGoogle Scholar
  101. 101.
    Stalkup FI. Carbon dioxide miscible flooding: past, present, and outlook for the future. J Pet Technol. 1978;30:1102–12.CrossRefGoogle Scholar
  102. 102.
    Hosseinipour A, Japper-Jaafar AB, Yusup S. The effect of CO2 on wax appearance temperature of crude oils. Proced Eng. 2016;148:1022–9.CrossRefGoogle Scholar
  103. 103.
    Jiang B, Qiu L, Li X, Yang S, Li K, Chen H. Measurement of the wax appearance temperature of waxy oil under the reservoir condition with ultrasonic method. Pet Explor Dev. 2014;41:509–12.CrossRefGoogle Scholar
  104. 104.
    Daridon J-L, Pauly J, Coutinho JAP, Montel F. Solid−liquid−vapor phase boundary of a north sea waxy crude: measurement and modeling. Energy Fuels. 2001;15:730–5.CrossRefGoogle Scholar
  105. 105.
    Hamouda AA, Viken BK. Wax deposition mechanism under high-pressure and in presence of light hydrocarbons. In: SPE International Symposium on Oilfield Chemistry, New Orleans, Louisiana: Society of Petroleum Engineers; March 1993; 385–96.Google Scholar
  106. 106.
    Vieira LC, Buchuid MB, Lucas EF. Effect of pressure on the crystallization of crude oil waxes. II. Evaluation of crude oils and condensate. Energy Fuels. 2010;24:2213–20.CrossRefGoogle Scholar
  107. 107.
    Vieira LC, Buchuid MB, Lucas EF. Evaluation of pressure on the crystallization of waxes using microcalorimetry. J Therm Anal Calorim. 2013;111:583–8.CrossRefGoogle Scholar
  108. 108.
    Das SK, Butler RM. Extraction of heavy oil and bitumen using solvents at reservoir pressure. In: Technical Meeting/Petroleum Conference of the South Saskatchewan Section. Regina: Petroleum Society of Canada; October 1995; 1–15.Google Scholar
  109. 109.
    Krishna R, Bhattarcharjee S, Joshi GC, Singh H, Purohit RC, Dilawar SVK, et al. Correlation of low temperature properties of diesel fuel with composition. Erdol und Kohle, Erdgas, Petrochemie. 1989;42:72–5.Google Scholar
  110. 110.
    Noel F. Thermal analysis of lubricating oils. Thermochim Acta. 1972;4:377–92.CrossRefGoogle Scholar
  111. 111.
    García MDC, Carbognani L. Asphaltene−paraffin structural interactions. effect on crude oil stability. Energy Fuels. 2001;15:1021–7.CrossRefGoogle Scholar
  112. 112.
    Orea M, Ranaudo MA, Lugo P, López L. Retention of alkane compounds on asphaltenes. insights about the nature of asphaltene-alkane interactions. Energy Fuels. 2016;30:8098–113.CrossRefGoogle Scholar
  113. 113.
    Mahmoud R, Gierycz P, Solimando R, Rogalski M. Calorimetric probing of n-alkane−petroleum asphaltene interactions. Energy Fuels. 2005;19:2474–9.CrossRefGoogle Scholar
  114. 114.
    Alcazar-Vara LA, Garcia-Martinez JA, Buenrostro-Gonzalez E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems. Fuel. 2012;93:200–12.CrossRefGoogle Scholar
  115. 115.
    Gray MR. Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy Fuels. 2003;17:1566–9.CrossRefGoogle Scholar
  116. 116.
    Carbognani L, Rogel E. Solid petroleum asphaltenes seem surrounded by alkyl layers. Pet Sci Technol. 2003;21:537–56.CrossRefGoogle Scholar
  117. 117.
    Wiehe IA. The pendant-core building block model of petroleum residua. Energy Fuels. 1994;8:536–44.CrossRefGoogle Scholar
  118. 118.
    Ganeeva YM, Yusupova TN, Romanov GV, Gubaidullin AT, Samigullina AI. The composition and thermal properties of waxes in oil asphaltenes. J Therm Anal Calorim. 2015;122:1365–73.CrossRefGoogle Scholar
  119. 119.
    Ariza-Leon E, Molina-Velasco D-R, Chaves-Guerrero A. Review of studies on asphaltene - wax interaction and the effect thereof on crystallization. CT&F Ciencia, Tecnol y Futur. 2014;5:39–53.CrossRefGoogle Scholar
  120. 120.
    Yang X, Kilpatrick P. Asphaltenes and waxes do not interact synergistically and coprecipitate in solid organic deposits. Energy Fuels. 2005;19:1360–75.CrossRefGoogle Scholar
  121. 121.
    Oliveira GE, Mansur CRE, Lucas EF, González G, de Souza WF. The effect of asphaltenes, naphthenic acids, and polymeric inhibitors on the pour point of paraffins solutions. J Dispers Sci Technol. 2007;28:349–56.CrossRefGoogle Scholar
  122. 122.
    García MDC. Crude oil wax crystallization. The effect of heavy n-paraffins and flocculated asphaltenes. Energy Fuels. 2000;14:1043–8.CrossRefGoogle Scholar
  123. 123.
    Senra M, Panacharoensawad E, Kraiwattanawong K, Singh P, Fogler HS. Role of n-alkane polydispersity on the crystallization of n-alkanes from solution. Energy Fuels. 2008;22:545–55.CrossRefGoogle Scholar
  124. 124.
    Kravchenko V. The eutectics and solid solutions of paraffins. Acta Physicochim URSS. 1946;21:335–44.Google Scholar
  125. 125.
    Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y. Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells. 2010;94:2158–65.CrossRefGoogle Scholar
  126. 126.
    He B, Martin V, Setterwall F. Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage. Fluid Phase Equilib. 2003;212:97–109.CrossRefGoogle Scholar
  127. 127.
    Wang W, Huang Q, Wang C, Li S, Qu W, Zhao J, et al. Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique. J Therm Anal Calorim. 2015;119:471–85.CrossRefGoogle Scholar
  128. 128.
    Valinejad R, Solaimany Nazar AR. An experimental design approach for investigating the effects of operating factors on the wax deposition in pipelines. Fuel. 2013;106:843–50.CrossRefGoogle Scholar
  129. 129.
    Huang Q, Wang J, Zhang J. Physical properties of wax deposits on the walls of crude pipelines. Pet Sci. 2009;6:64–8.CrossRefGoogle Scholar
  130. 130.
    Huang QY. Modeling of wax deposition on waxy crude pipelines. Ph. D. Thesis, China University of Petroleum, Beijing; 2000.Google Scholar
  131. 131.
    Martins JA, Cruz-Pinto JJC. The temperature calibration on cooling of differential scanning calorimeters. Thermochim Acta. 1999;332:179–88.CrossRefGoogle Scholar
  132. 132.
    Menczel JD, Leslie TM. Temperature calibration of an electrical compensation DSC on cooling using thermally stable high purity liquid crystals. J Therm Anal. 1993;40:957–70.CrossRefGoogle Scholar
  133. 133.
    Kök MV, Varfolomeev MA, Nurgaliev DK. Wax appearance temperature (WAT) determinations of different origin crude oils by differential scanning calorimetry. J Pet Sci Eng. 2018;168:542–5.CrossRefGoogle Scholar
  134. 134.
    Roenningsen HP, Bjoerndal B, Baltzer Hansen A, Batsberg Pedersen W. Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuels. 1991;5:895–908.CrossRefGoogle Scholar
  135. 135.
    Martos C, Coto B, Espada JJ, Robustillo MD, Gómez S, Peña JL. Experimental determination and characterization of wax fractions precipitated as a function of temperature. Energy Fuels. 2008;22:708–14.CrossRefGoogle Scholar
  136. 136.
    Espada JJ, Coutinho JAP, Peña JL. Evaluation of methods for the extraction and characterization of waxes from crude oils. Energy Fuels. 2010;24:1837–43.CrossRefGoogle Scholar
  137. 137.
    Fan K, Huang Q, Li S. Determination of the optimizing operating procedure for DSC test of wax-solvent samples with narrow and sharp wax peak and error analysis of data reliability. J Therm Anal Calorim. 2016;126:1713–25.CrossRefGoogle Scholar
  138. 138.
    Khoshooei MA. Vapour-liquid equilibrium of by-products n-alcohols and 1, 3-propanediol from polyol production. M.Sc. Thesis, University of Alberta, Edmonton; 2013.Google Scholar
  139. 139.
    Monger-McClure TG, Tackett JE, Merrill LS. Comparisons of cloud point measurement and paraffin prediction methods. SPE Prod Facil. 1999;14:4–16.CrossRefGoogle Scholar
  140. 140.
    Queimada AJ, Dauphin C, Marrucho IM, Coutinho JA. Low temperature behaviour of refined products from DSC measurements and their thermodynamical modelling. Thermochim Acta. 2001;372:93–101.CrossRefGoogle Scholar
  141. 141.
    Guo X, Pethica BA, Huang JS, Adamson DH, Prud’homme RK. Effect of cooling rate on crystallization of model waxy oils with microcrystalline poly(ethylene butene). Energy Fuels. 2006;20:250–6.CrossRefGoogle Scholar
  142. 142.
    Mansourpoor M, Azin R, Osfouri S, Izadpanah AA. Study of wax disappearance temperature using multi-solid thermodynamic model. J Pet Explor Prod Technol. 2018 (in-press).Google Scholar
  143. 143.
    Bosselet F, Létoffé JM, Claudy P, Valentin P. Etude du comportement thermique des n-alcanes dans des milieux hydrocarbones complexes par analyse calorimetrique differentielle. II. Determination du taux de n-alcanes contenu dans un gazole. Determination du point de trouble. Thermochim Acta. 1983;70:19–34.CrossRefGoogle Scholar
  144. 144.
    Baltzer HA, Larsen E, Batsberg PW, Nielsen AB, Roenningsen HP. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels. 1991;5:914–23.CrossRefGoogle Scholar
  145. 145.
    Heino E-L. Determination of cloud point for petroleum middle distillates by differential scanning calorimetry. Thermochim Acta. 1987;114:125–30.CrossRefGoogle Scholar
  146. 146.
    Taggart AM, Voogt F, Clydesdale G, Roberts KJ. An examination of the nucleation kinetics of n-alkanes in the homologous series C13H28 to C32H66, and their relationship to structural type, associated with crystallization from stagnant melts. Langmuir. 1996;12:5722–8.CrossRefGoogle Scholar
  147. 147.
    DE Andrade V, Marcelino Neto MA, Negrão COR. The importance of supersaturation on determining the solid-liquid equilibrium temperature of waxy oils. Fuel. 2017;206:516–23.CrossRefGoogle Scholar
  148. 148.
    Tiwary D, Mehrotra AK. Phase transformation and rheological behaviour of highly paraffinic “Waxy” mixtures. Can J Chem Eng. 2004;82:162–74.CrossRefGoogle Scholar
  149. 149.
    Kasumu AS, Arumugam S, Mehrotra AK. Effect of cooling rate on the wax precipitation temperature of “waxy” mixtures. Fuel. 2013;103:1144–7.CrossRefGoogle Scholar
  150. 150.
    Japper-Jaafar A, Bhaskoro PT, Mior ZS. A new perspective on the measurements of wax appearance temperature: comparison between DSC, thermomicroscopy and rheometry and the cooling rate effects. J Pet Sci Eng. 2016;147:672–81.CrossRefGoogle Scholar
  151. 151.
    Faust HR. The thermal analysis of waxes and petrolatums. Thermochim Acta. 1978;26:383–98.CrossRefGoogle Scholar
  152. 152.
    Claudy P, Létoffé J-M, Chagué B, Orrit J. Crude oils and their distillates: characterization by differential scanning calorimetry. Fuel. 1988;67:58–61.CrossRefGoogle Scholar
  153. 153.
    Claudy P, Létoffé J-M, Neff B, Damin B. Diesel fuels: determination of onset crystallization temperature, pour point and filter plugging point by differential scanning calorimetry. Correlation with standard test methods. Fuel. 1986;65:861–4.CrossRefGoogle Scholar
  154. 154.
    Miller R, Dawson G. Characterization of hydrocarbon waxes and polyethylenes by DSC. Thermochim Acta. 1980;41:93–105.CrossRefGoogle Scholar
  155. 155.
    Liu Y, Li X, Hu P, Hu G. Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids PCM. Int J Refrig. 2015;50:80–6.CrossRefGoogle Scholar
  156. 156.
    Jiang Z, Hutchinson J, Imrie C. Measurement of the wax appearance temperatures of crude oils by temperature modulated differential scanning calorimetry. Fuel. 2001;80:367–71.CrossRefGoogle Scholar
  157. 157.
    Ruwoldt J, Kurniawan M, Oschmann H-J. Non-linear dependency of wax appearance temperature on cooling rate. J Pet Sci Eng. 2018;165:114–26.CrossRefGoogle Scholar
  158. 158.
    Struchkov IA, Rogachev MK. Wax precipitation in multicomponent hydrocarbon system. J Pet Explor Prod Technol. 2017;7:543–53.CrossRefGoogle Scholar
  159. 159.
    Paiva FL, Marchesini FH, Calado VMA, Galliez AP. Wax precipitation temperature measurements revisited: the role of the degree of sample confinement. Energy Fuels. 2017;31:6862–75.CrossRefGoogle Scholar
  160. 160.
    Alcazar-Vara LA, Buenrostro-Gonzalez E. Characterization of the wax precipitation in Mexican crude oils. Fuel Process Technol. 2011;92:2366–74.CrossRefGoogle Scholar
  161. 161.
    Hammami A, Ratulowski J, Coutinho JAP. Cloud points: can we measure or model them? Pet Sci Technol. 2003;21:345–58.CrossRefGoogle Scholar
  162. 162.
    Kök MV, Letoffe JM, Claudy P. DSC and rheometry investigations of crude oils. J Therm Anal Calorim. 1999;56:959–65.CrossRefGoogle Scholar
  163. 163.
    Alcazar-Vara, LA, Buenrostro-Gonzalez E. Liquid-solid phase equilibria of paraffinic systems by DSC measurements. In: Elkordy AA, editor. Appl Calorim a Wide Context. Rijeka: InTech; 2013. pp. 254–76.Google Scholar
  164. 164.
    Huang Z, Zheng S, Fogler HS. Wax deposition: experimental characterizations, theoretical modeling, and field practices. Boca Raton: CRC Press; 2016.CrossRefGoogle Scholar
  165. 165.
    Kruka VR, Cadena ER, Long TE. Cloud-point determination for crude oils. J Pet Tech. 1995;47:681–7.CrossRefGoogle Scholar
  166. 166.
    Erickson DD, Niesen VG, Brown TS. Thermodynamic measurement and prediction of paraffin precipitation in crude oil. In: SPE Annual Technical Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers; Octpber 1993;933–48.Google Scholar
  167. 167.
    Cazaux G, Barre L, Brucy F. Waxy crude cold start: assessment through gel structural properties. In: SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers; September 1998;729–739.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations