Advertisement

Thermal behavior of a phenolic resin for brake pad manufacturing

  • C. Menapace
  • M. Leonardi
  • M. Secchi
  • A. Bonfanti
  • S. Gialanella
  • G. Straffelini
Article
  • 29 Downloads

Abstract

The high-temperature behavior of a fast curing commercial phenolic resin, used as a binder in commercial car brake pads, has been investigated. The research comes from the fact that a temperature in excess of 300 °C can be reached on the surface pad in case of severe braking conditions. At this temperature, the decomposition of the resin may not only result in detrimental effects for the braking capability of the pads, but also result in a significant increase in their wear rate. The phenolic resin alone and in association with other pad ingredients (master batch), and the friction material, obtained after curing treatments, were analyzed. The main degradation steps of the phenolic resin were identified, as concerns the relevant chemical decomposition processes. The degradation of the methylene and phenol groups turned out to be the most important in terms of mass loss. In the master batch and in the consolidated friction material, the onset temperature of these processes is influenced by the presence of the other ingredients, with particular regard to some metal components. A reduction of the resin degradation onset temperature of 51 °C was observed between the pure resin and the friction material.

Keywords

Brake pad Phenolic resin Thermogravimetric analysis Thermal degradation Polycondensation 

Notes

Acknowledgements

The authors thank Guido Perricone of Brembo SpA for useful discussion, the friction group of Brembo SpA for providing the samples, Maurizio Montagna for valuable comments on Raman spectroscopy and Luca Benedetti and Michele Fedel for technical support with IR analysis. This research has been carried out within the EIT Raw Materials project: ECOPADS (Eliminating COpper from brake PADS & recycling—no. 17182).

References

  1. 1.
    Bijwe J. Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review. Polym Compos. 1997;18:378–96.CrossRefGoogle Scholar
  2. 2.
    Anderson AE. Friction and wear of automotive brakes. ASM Handb. 1992;18:569–77.Google Scholar
  3. 3.
    Ingo GM, D’Uffizi M, Falso G, Bultrini G, Padeletti G. Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim Acta. 2004;418:61–8.CrossRefGoogle Scholar
  4. 4.
    Stanford MK, Jain VK. Friction and wear characteristics of hard coatings. Wear. 2001;251:990–6.CrossRefGoogle Scholar
  5. 5.
    Torre C, Mattutino G, Vasino V, Robino C. Brake linings: a source of Non-GSR particles containing lead, barium and antimony. J Forensic Sci. 2002;47(3):494–504.Google Scholar
  6. 6.
    Plachá D, Vaculík M, Mikeska M, Dutko O, Peikertová P, Kukutschová J, Mamulová Kutláková K, Růžičková J, Tomášek V, Filip P. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear. 2017;376–377:705–16.CrossRefGoogle Scholar
  7. 7.
    Chandra Verma P, Ciudin R, Bonfanti A, Aswath P, Straffelini G, Gialanella S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear. 2016;346–347:56–65.CrossRefGoogle Scholar
  8. 8.
    Federici M, Gialanella S, Leonardi M, Perricone G, Straffelini G. A preliminary investigation on the use of the pin-on-disc test to simulate offbrake friction and wear characteristics of friction materials. Wear. 2018;410–411:202–9.CrossRefGoogle Scholar
  9. 9.
    Rosu D, Varganici C-D, Rosu L, Mocanu OM. Thermal degradation of thermosetting blends, thermal degradation of polymer blends. In: Visakh PM, Arao Y, editors. Composites and nanocomposites, engineering materials. Cham: Springer; 2015.Google Scholar
  10. 10.
    Chen Y, Chen Z, Xiao S, Liu H. A novel thermal degradation mechanism of phenol–formaldehyde type resins. Thermochim Acta. 2008;476(1–2):39–43.CrossRefGoogle Scholar
  11. 11.
    Santamaria Razo D, Pellerej D. Control of gaseous emission during the curing of novolac phenolic resin in friction materials production: production cycle, physical properties and tribological properties improvements. SAE Int J Mater Manuf. 2014;7(1):10–6.CrossRefGoogle Scholar
  12. 12.
    Chen Z, Chen Y, Liu H. Study on thermal degradation of phenolic resin. Appl Mech Mater. 2013;422:24–8.CrossRefGoogle Scholar
  13. 13.
    Chen Y, Fan D, Qin T, Chu F. Thermal degradation and stability of accelerated-curing phenol–formaldehyde resin. Bioresources. 2014;9(3):4063–75.Google Scholar
  14. 14.
    Feng S, Yuan Z, Leitch M, Xu CC. Thermal degradation performance of bark based phenol–formaldehyde adhesives. J Anal Appl Pyrolysis. 2015;115:184–93.CrossRefGoogle Scholar
  15. 15.
    Costa L, Rossi di Montelera L, Camino G, Weill ED, Pearle EM. Structure-charring relationship in phenol–formaldehyde type resins. Polym Degrad Stab. 1997;56:23–35.CrossRefGoogle Scholar
  16. 16.
    Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 3rd ed. New York: Academic Press Inc.; 1990.Google Scholar
  17. 17.
    Kristkova M, Filip P, Weiss Z, Peter R. Influence of metals on the phenol–formaldehyde resin degradation in friction composites. Polym Degrad Stab. 2004;84:49–60.CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Yan N, Feng MW. Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks. Thermochim Acta. 2013;555:46–52.CrossRefGoogle Scholar
  19. 19.
    Rocks J, Rintoul L, Vohwinkel F, George G. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer (Guildf). 2004;45(20):6799–811.CrossRefGoogle Scholar
  20. 20.
    Caponi S, Corezzi S, Fioretto D, Fontana A, Monaco G, Rossi F. Effect of polymerization on the boson peak, from liquid to glass. J Non Cryst Solids. 2011;357(2):530–3.CrossRefGoogle Scholar
  21. 21.
    Morterra C, Low MJD. IR studies of carbons—VII. The pyrolysis of a phenol–formaldehyde resin. Carbon. 1985;23:525–30.CrossRefGoogle Scholar
  22. 22.
    Yang P, Zhao Y, Lu Y, Xu QZ, Xu XW, Dong L, Yu SH. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano. 2011;5(3):2147–54.CrossRefGoogle Scholar
  23. 23.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 2005;43(8):1731–42.CrossRefGoogle Scholar
  24. 24.
    Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett. 2006;88(16):163106–9.CrossRefGoogle Scholar
  25. 25.
    Fink JK. Phenol/formaldehyde resins, reactive polymers: fundamentals and applications (third edition). Oxford: Elsevier; 2018. p. 225–253.CrossRefGoogle Scholar
  26. 26.
    Ramousse S, Hoj JW, Sorensen OT. Thermal characterisation of brake pads. J Therm Anal Calorim. 2001;64:933–43.CrossRefGoogle Scholar
  27. 27.
    Di Gregorio L, Ronchetti S, Onida B. Phenolic resin emissions upon thermal degradation. In: Eurobrake 2015, Dresden, Germany, 4–6 May 2015, Publisher FISITA.Google Scholar
  28. 28.
    Muylaert I, Verberckmoes A, De Decker J, Van Der Voort P. Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. Adv Colloid Interface Sci. 2012;175:39–51.CrossRefGoogle Scholar
  29. 29.
    Wong HW, Peck J, Bonomi RE, Assif J, Panerai F, Reinisch G, Lachaud J, Mansour NN. Quantitative determination of species production from phenol–formaldehyde resin pyrolysis. Polym Degrad Stab. 2015;112:122–31.CrossRefGoogle Scholar
  30. 30.
    Chen ZQ, Chen YF, Liu HB. Pyrolysis of phenolic resin by TG-MS and FTIR analysis. Adv Mater Res. 2013;631–632:104–9.CrossRefGoogle Scholar
  31. 31.
    Kukutschova J, Roubicek V, Maslan M, Jancik D, Slovak V, Malachova K, Pavlickova Z, Filip P. Wear performance and wear debris of semimetallic automotive brake materials. Wear. 2010;268:86–93.CrossRefGoogle Scholar
  32. 32.
    Kukutschova J, Moravec P, Tomasek V, Matejka V, Smolik J, Schwarz J, Seidlerova J, Safarova K, Filip P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ Pollut. 2011;159:998–1006.CrossRefGoogle Scholar
  33. 33.
    Asaro L, D’Amico DA, Alvarez VA, Rodriguez ES, Manfredi LB. Impact of different nanoparticles on the thermal degradation kinetics of phenolic resin nanocomposites. J Therm Anal Calorim. 2017;128:1463–78.CrossRefGoogle Scholar
  34. 34.
    Manfredi LB, Puglia D, Tomasucci A, Kenny JM, Vazquez A. Influence of the clay modification on the properties of resol nanocomposites. Macromol Mater Eng. 2008;293(11):878–86.CrossRefGoogle Scholar
  35. 35.
    Li S, Chen F, Zhang B, Luo Z, Zhao T. Structure and improved thermal stability of phenolic resin containing silicon and boron elements. Polym Degrad Stab. 2016;133:321–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of TrentoTrentoItaly
  2. 2.Department of PhysicsUniversity of TrentoTrentoItaly
  3. 3.Brembo S.p.A.StezzanoItaly

Personalised recommendations