Advertisement

Experimental investigation of effective parameters on MWCNT–TiO2/SAE50 hybrid nanofluid viscosity

  • Mohammad Hemmat EsfeEmail author
  • Mohammad Reza Sarmasti Emami
  • Mahmoud Kiannejad Amiri
Article
  • 30 Downloads

Abstract

In the present study, rheological behavior of multi-walled carbon nanotube (MWCNT) (30%)–TiO2 (70%)/SAE50 hybrid nanofluid is investigated. Samples of nanofluid with nanoparticle concentrations of 0% up to 1% were prepared, and their dynamic viscosity was measured at temperatures between 25 and 50 °C and various shear rates using Brookfield viscometer. The relation between shear stress and shear rate of MWCNT–TiO2/SAE50 nanofluid showed its non-Newtonian behavior at all concentrations. In order to predict the viscosity, a comparison was done between the efficiency of different proposed empirical correlations in this prediction. Three empirical correlations were proposed, and two different independent variables were considered for each one. In all three cases, conformity of obtained results for viscosity was compared with experimentally obtained viscosities. Results revealed much better accuracy of proposed empirical correlations containing temperature as an independent variable compared with the other correlations not containing independent variable of temperature. Accuracy and efficiency of predicting correlations for relative viscosity was compared with efficiency of absolute viscosity prediction correlations and results indicated relatively equal accuracy of results and prediction values. Furthermore, viscosity changes of MWCNT (30%)–TiO2 (70%)/SAE50 nanofluid were compared with other studies in order to prove its better performance.

Keywords

Hybrid nanofluids MWCNT–TiO2/SAE50 Proposed mathematical correlation Viscosity 

Notes

References

  1. 1.
    Hemmat Esfe M, Wongwises S, Rejvani M. Prediction of thermal conductivity of carbon nanotube-EG nanofluid using experimental data by ANN. Curr Nanosci. 2017;13(3):324–9.CrossRefGoogle Scholar
  2. 2.
    Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.CrossRefGoogle Scholar
  3. 3.
    Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.CrossRefGoogle Scholar
  4. 4.
    Hemmat Esfe M, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58.CrossRefGoogle Scholar
  5. 5.
    Hemmat Esfe M, Hajmohammad H, Moradi R, Arani AAA. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl Therm Eng. 2017;112:1648–57.CrossRefGoogle Scholar
  6. 6.
    Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131(2):1437–47.CrossRefGoogle Scholar
  7. 7.
    Hemmat Esfe M. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim. 2017;127(3):2125–31.CrossRefGoogle Scholar
  8. 8.
    Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, Akbari M. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50.CrossRefGoogle Scholar
  9. 9.
    Hemmat Esfe M, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Phys E Low-Dimens Syst Nanostruct. 2018;95:71–7.CrossRefGoogle Scholar
  10. 10.
    Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7(1):17369.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J Mol Liq. 2017;230:121–8.CrossRefGoogle Scholar
  12. 12.
    Dehkordi RA, Hemmat Esfe M, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity. Appl Therm Eng. 2017;120:358–66.CrossRefGoogle Scholar
  13. 13.
    Hemmat Esfe M, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Ahangar MRH. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81.CrossRefGoogle Scholar
  14. 14.
    Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9:151.  https://doi.org/10.1186/1556-276X-9-151.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochimica Acta. 2012;545:180–6.  https://doi.org/10.1016/j.tca.2012.07.017.CrossRefGoogle Scholar
  16. 16.
    Harish S, Ishikawa K, Einarsson E, Aikawa S, Chiashi S, Shiomi J, Maruyama S. Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transf. 2012;55(13–14):3885–90.CrossRefGoogle Scholar
  17. 17.
    Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19(31):315701.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6(6):1068–71.CrossRefGoogle Scholar
  19. 19.
    Jha N, Ramaprabhu S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl Phys 2009;106(8):084317.CrossRefGoogle Scholar
  20. 20.
    Nanda J, Maranville C, Bollin SC, Sawall D, Ohtani H, Remillard JT, Ginder JM. Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C. 2008;112(3):654–8.CrossRefGoogle Scholar
  21. 21.
    Sundar LS, Hortiguela MJ, Singh MK, Sousa ACM. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: an experimental study. Int Commun Heat Mass Transf. 2016;76:245–55.CrossRefGoogle Scholar
  22. 22.
    Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008;103(9):1–8.CrossRefGoogle Scholar
  23. 23.
    Liu M, Lin MC, Wang C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett. 2011;6(1):297.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hemmat Esfe M, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Thermal Eng. 2017;125:673–85.CrossRefGoogle Scholar
  25. 25.
    Chen LF, Cheng M, Yang DJ, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548:118–23.Google Scholar
  26. 26.
    Hemmat Esfe M, Rejvani M, Karimpour R, AbbasianArani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-6002-9.CrossRefGoogle Scholar
  27. 27.
    Hemmat Esfe M, Afrand M, Yan WM, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data. Int Commun in Heat Mass Transf. 2015;66:246–9.CrossRefGoogle Scholar
  28. 28.
    Hemmat Esfe M, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)-ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.CrossRefGoogle Scholar
  29. 29.
    Hemmat Esfe M, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.CrossRefGoogle Scholar
  30. 30.
    Afrand M, Hemmat Esfe M, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E Low-Dimens Syst Nanostruct. 2017;87:242–7.CrossRefGoogle Scholar
  31. 31.
    Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015.  https://doi.org/10.1016/j.icheatmasstransfer.2015.01.001.CrossRefGoogle Scholar
  32. 32.
    Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun. Heat Mass Transf. 2015.  https://doi.org/10.1016/j.icheatmasstransfer.2015.05.014.CrossRefGoogle Scholar
  33. 33.
    Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.  https://doi.org/10.1007/s10973-014-4002-1.CrossRefGoogle Scholar
  34. 34.
    Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Thermal Anal Calorim. 2015;120(2):1145–9.CrossRefGoogle Scholar
  35. 35.
    Hemmat Esfe M, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.CrossRefGoogle Scholar
  36. 36.
    Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3. Int Commun Heat Mass Transf. 2017;82:154–60.CrossRefGoogle Scholar
  37. 37.
    Hemmat Esfe M, Akbari M, Toghraie DS, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014.  https://doi.org/10.1615/HeatTransRes.2013007127.CrossRefGoogle Scholar
  38. 38.
    Hemmat Esfe M, Arani AAA, Niroumand AH, Yan WM, Karimipour A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf. 2015;89:783–91.CrossRefGoogle Scholar
  39. 39.
    Hemmat Esfe M, Arani Akbar Abbasian A, Aghaie A, Wongwises S. Mixed convection flow and heat transfer in an up-driven, inclined, square enclosure subjected to DWCNT-water nanofluid containing three circular heat sources. Curr Nanosci. 2017;13(3):311–23.CrossRefGoogle Scholar
  40. 40.
    Hemmat Esfe M, Esforjani SSM, Akbari M, Karimiopour A. Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle. Heat Transf Res. 2014.  https://doi.org/10.1615/HeatTransRes.2014007271.CrossRefGoogle Scholar
  41. 41.
    Hemmat Esfe M, Esforjani SSM, Akbari M, Hajmohammad MH. Numerical simulation of mixed convection in a SIO2/water nanofluid in a two−sided lid-driven square enclosure with sinusoidal boundary conditions on the wall. Heat Transf Res. 2014;45(7):677–700.CrossRefGoogle Scholar
  42. 42.
    Ghadi AZ, Noroozi MJ, Hemmat Esfe M. Nanofluid implementation for heat transfer augmentation of magneto hydrodynamic flows in a lid-driven cavity using experimental-based correlations. Int J Appl Electromagn Mech. 2013;42(4):589–602.CrossRefGoogle Scholar
  43. 43.
    Hemmat Esfe M, Wongwises S, Esfandeh S, Alirezaie A. Development of a new correlation and post processing of heat transfer coefficient and pressure drop of functionalized COOH MWCNT nanofluid by artificial neural network. Curr Nanosci. 2018;14(2):104–12.Google Scholar
  44. 44.
    Oliveira GA, Cardenas Contreras EM, BandarraFilho EP. Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator. Appl Therm Eng. 2016.  https://doi.org/10.1016/j.applthermaleng.2016.05.086.CrossRefGoogle Scholar
  45. 45.
    Aberoumand H, Jahani A, Aberoumand S, Jafarimoghaddam A. Experimental Investigation on Heat Transfer of Silver-Oil Nanofluid in Concentric Annular Tube. Transp Phenom Nano Micro Scales. 2015;3(2):118–28.Google Scholar
  46. 46.
    Ehteram HR, AbbasianArani AA, Sheikhzadeh GA, Aghaei A, Malihi AR. The effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer. Transp Phenom Nano Micro Scales. 2016;4(1):19–28.Google Scholar
  47. 47.
    Karimipour A, Alipour H, Akbari OA, Semiromi DT, Hemmat Esfe M. Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian. J Sci Technol. 2015.  https://doi.org/10.17485/ijst/2015/v8i15/51707 CrossRefGoogle Scholar
  48. 48.
    Hemmat Esfe M, Arani AAA, Karimipour A, Esforjani SSM. Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids. Heat Transf Res. 2014;45(3):279–92.Google Scholar
  49. 49.
    Zarei H, Rostamian SH, Hemmat Esfe M. Heat transfer behavior of mixed convection flow in lid driven cavity containing hot obstacle subjected to Nanofluid with variable properties. J Basic Appl Sci Res. 2013;3(2):713–21.Google Scholar
  50. 50.
    Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-014-4197-1.CrossRefGoogle Scholar
  51. 51.
    Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.  https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037.CrossRefGoogle Scholar
  52. 52.
    Hemmat Esfe M, Nadooshan AA, Arshi A, Alirezaie A. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: data analysis and modeling with artificial neural network. Phys E 2018;97:155–61.CrossRefGoogle Scholar
  53. 53.
    Aminian A. Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network. Powder Technol. 2016.  https://doi.org/10.1016/j.powtec.2016.05.040.CrossRefGoogle Scholar
  54. 54.
    Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. Int Commun Heat Mass Transf. 2016;74:91–7.CrossRefGoogle Scholar
  55. 55.
    Hemmat Esfe M. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94.CrossRefGoogle Scholar
  56. 56.
    Karimipour A, Hemmat Esfe M, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A Stat Mech Appl. 2014;402:150–68.CrossRefGoogle Scholar
  57. 57.
    Hemmat Esfe M, Arani AAA, Yan WM, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid. Int J Heat Mass Transf. 2016;92:76–82.CrossRefGoogle Scholar
  58. 58.
    Afrand M, Rostami S, Akbari M, Wongwises S, Hemmat Esfe M, Karimipour A. Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. Int J Heat Mass Transf. 2015;90:418–26.CrossRefGoogle Scholar
  59. 59.
    Hemmat Esfe M. Designing a neural network for predicting the heat transfer and pressure drop characteristics of Ag/water nanofluids in a heat exchanger. Appl Therm Eng. 2017;126:559–65.CrossRefGoogle Scholar
  60. 60.
    Alirezaie A, Saedodin S, Hemmat Esfe M, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017.  https://doi.org/10.1016/j.molliq.2017.05.121.CrossRefGoogle Scholar
  61. 61.
    Hemmat Esfe M, Hajmohammad MH, Wongwises S. Pareto optimal design of thermal conductivity and viscosity of NDCo3O4 nanofluids by MOPSO and NSGA II using response surface methodology. Curr Nanosci. 2018;14(1):62–70.Google Scholar
  62. 62.
    Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An Experimental Study on the Effect of Diameter on Thermal Conductivity and Dynamic Viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.CrossRefGoogle Scholar
  63. 63.
    Hemmat Esfe M, Raki HR, Emami MRS, Afrand M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technology. 2019;342:808–16.CrossRefGoogle Scholar
  64. 64.
    Hemmat Esfe M. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids. J Therm Analy Calorim. 2017.  https://doi.org/10.1007/s10973-017-6903-2.CrossRefGoogle Scholar
  65. 65.
    Hemmat Esfe M, Abbasian Arani AA, Rezaee M, Yazdeli RD, Wongwises S. An inspection of viscosity models for numerical simulation of natural convection of Al2O3-water nanofluid with variable properties. Curr Nanosci. 2017;13(5):449–61.Google Scholar
  66. 66.
    Hemmat Esfe M, Arani AAA, Esfandeh S. Experimental study on rheological behavior of monograde heavy-duty engine oil containing CNTs and oxide nanoparticles with focus on viscosity analysis. J Mol Liq. 2018;272:319–29.CrossRefGoogle Scholar
  67. 67.
    Hemmat Esfe M, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.  https://doi.org/10.1016/j.icheatmasstransfer.2015.06.013.CrossRefGoogle Scholar
  68. 68.
    Hemmat Esfe M, Arani AAA. An experimental determination and accurate prediction of dynamic viscosity of MWCNT(%40)-SiO2(%60)/5W50 nano-lubricant. J Mol Liq. 2018;259:227–37.CrossRefGoogle Scholar
  69. 69.
    Hemmat Esfe M, Bahiraei M, Mahian O. Experimental study for developing an accurate model to predict viscosity of CuO–ethylene glycol nanofluid using genetic algorithm based neural network. Powder Technol. 2018.  https://doi.org/10.1016/j.powtec.2018.07.013.CrossRefGoogle Scholar
  70. 70.
    Hemmat Esfe M, Reiszadeh M, Esfandeh S, Afrand M. Optimization of MWCNTs (10%)–Al2O3 (90%)/10W40 nanofluid viscosity using experimental data and artificial neural network. Phys A Stat Mech Appl. 2018.  https://doi.org/10.1016/j.physa.2018.07.040.CrossRefGoogle Scholar
  71. 71.
    Hemmat Esfe M, Rostamian H, Akbari M, Hassani M. An experimental study and new correlations of viscosity of ethylene glycol-water based nanofluid at various temperatures and different solid concentrations. Heat Transf Res. 2016.  https://doi.org/10.12989/sem.2016.58.1.093 CrossRefGoogle Scholar
  72. 72.
    Hemmat Esfe M, Esfandeh S. Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl Therm Eng. 2018;131:1026–33.CrossRefGoogle Scholar
  73. 73.
    Hemmat Esfe M, Esfandeh S. Rheological behavior of CuO/EG:W (20:80 v/v) nanofluid from a thermal perspective. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7082-5.CrossRefGoogle Scholar
  74. 74.
    Hemmat Esfe M, Bahiraei M, Hajmohammad MH, Afrand M. Rheological characteristics of MgO/oil nanolubricants: experimental study and neural network modeling. Int Commun Heat Mass Transfer. 2017.  https://doi.org/10.1016/j.icheatmasstransfer.2017.05.017.CrossRefGoogle Scholar
  75. 75.
    Hemmat Esfe M, Esfandeh S, Alirezaie A. A novel experimental investigation on the effect of nanoparticles composition on the rheological behavior of nano-hybrids. J Mol Liq. 2018;269:933–9.CrossRefGoogle Scholar
  76. 76.
    Hemmat Esfe M, Rostamian H, Sarlak MR. A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines. J Mol Liq. 2018;254:406–13.CrossRefGoogle Scholar
  77. 77.
    Hemmat Esfe M, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.CrossRefGoogle Scholar
  78. 78.
    Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.CrossRefGoogle Scholar
  79. 79.
    Hemmat Esfe M, Rostamian H, Sarlak MR, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys E Low-Dimens Syst Nanostruct. 2017;94:231–40.CrossRefGoogle Scholar
  80. 80.
    Nadooshan AA, Hemmat Esfe M, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E Low-Dimens Syst Nanostruct. 2017.  https://doi.org/10.1016/j.physe.2017.05.011.CrossRefGoogle Scholar
  81. 81.
    Hemmat Esfe M, Tatar A, Ahangar MRH, Rostamian H. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant. Phys E Low-Dimens Syst Nanostruct. 2017.  https://doi.org/10.1016/j.physe.2017.08.019.CrossRefGoogle Scholar
  82. 82.
    Hemmat Esfe M, Saedodin S, Rejvani M, Shahram J. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Phys E Low-Dimens Syst Nanostruct. 2017;90:194–203.CrossRefGoogle Scholar
  83. 83.
    Hemmat Esfe M, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.CrossRefGoogle Scholar
  84. 84.
    Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of AlO/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.CrossRefGoogle Scholar
  85. 85.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.CrossRefGoogle Scholar
  86. 86.
    Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.CrossRefGoogle Scholar
  87. 87.
    Hussein AM, Sharma KV, Bakar RA, Kadirgama K. The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. J Nanomater. 2013.  https://doi.org/10.1155/2013/859563.CrossRefGoogle Scholar
  88. 88.
    Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7.CrossRefGoogle Scholar
  89. 89.
    Hemmat Esfe M, Amiri MK, Alirezaie A. Thermal conductivity of a hybrid nanofluid. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-017-6836-9.CrossRefGoogle Scholar
  90. 90.
    Hemmat Esfe M, Esfandeh S, Amiri MK, Afrand M. A novel applicable experimental study on the thermal behavior of SWCNTs(60%)-MgO(40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 2018;342:998–1007.CrossRefGoogle Scholar
  91. 91.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.004.CrossRefGoogle Scholar
  92. 92.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.003.CrossRefGoogle Scholar
  93. 93.
    Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78.CrossRefGoogle Scholar
  94. 94.
    Akbarzadeh S, Farhadi M, Sedighi K, Ebrahimi M. Experimental investigation on the thermal conductivity and viscosity of ZnOnanofluid and development of new correlations. Trans Phenom Nano Micro Scales. 2014;2(2):149–60.Google Scholar
  95. 95.
    Hemmat Esfe M, Saedodin S, Sharafi T. An experimental investigation and new correlations of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.CrossRefGoogle Scholar
  96. 96.
    Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci. 2016;81:420–9.CrossRefGoogle Scholar
  97. 97.
    Suganthi KS, Vinodhan VL, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy. 2014;135:548–59.CrossRefGoogle Scholar
  98. 98.
    Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.CrossRefGoogle Scholar
  99. 99.
    Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.CrossRefGoogle Scholar
  100. 100.
    Hemmat Esfe M, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.CrossRefGoogle Scholar
  101. 101.
    Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermo Chim Acta. 2012;549:87–94.CrossRefGoogle Scholar
  102. 102.
    Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.CrossRefGoogle Scholar
  103. 103.
    Hemmat Esfe M, Zabihi F, Rostamian H, Esfandeh S. Experimental investigation and model development of the non-Newtonian behavior of CuO–MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J Mol Liq. 2018;249:677–87.CrossRefGoogle Scholar
  104. 104.
    Hemmat Esfe M, Rostamian H, Afrand M, Wongwises S. Examination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40). J Nanostruct. 2016;6(4):257–63.Google Scholar
  105. 105.
    Ettefaghi E, Rashidi A, Ahmadi H, Mohtasebi SS, Pourkhalil M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int Commun Heat Mass Transf. 2013;48:178–82.CrossRefGoogle Scholar
  106. 106.
    Hemmat Esfe M, Kamyab MH, Afrand M, Amiri MK. Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10 W-40 engine oil. Phys A Stat Mech Appl. 2018;510:610–24.CrossRefGoogle Scholar
  107. 107.
    Ettefaghi E, Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transf. 2013;46:142–7.CrossRefGoogle Scholar
  108. 108.
    Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.CrossRefGoogle Scholar
  109. 109.
    Zareie A, Akbari M. Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: an experimental study. J Mol Liq. 2017;230:408–14.CrossRefGoogle Scholar
  110. 110.
    Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO–MWCNT/ethylene glycol hybrid nanofluid: experimental study. Phys E Low-Dimens Syst Nanostruct. 2016;84:564–70.CrossRefGoogle Scholar
  111. 111.
    Hemmat Esfe M, Karimpour R, Arani AAA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3–MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102.CrossRefGoogle Scholar
  112. 112.
    Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental 2 investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transf. 2016;76:41–5.CrossRefGoogle Scholar
  113. 113.
    Shababi K, Firouzi M, Fakhar A. An experimental study on rheological behavior of SAE50 engine oil. J Therm Anal Calorim. 2018;131(3):2311–20.CrossRefGoogle Scholar
  114. 114.
    Goodarzi M, Toghraie D, Reiszadeh M, Afrand M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7707-8.CrossRefGoogle Scholar
  115. 115.
    Hemmat Esfe M, Arani AAA, Esfandeh S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl Therm Eng. 2018;143:493–506.CrossRefGoogle Scholar
  116. 116.
    Dardan E, Afrand M, Isfahani AHM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.CrossRefGoogle Scholar
  117. 117.
    Aberoumand S, Jafarimoghaddam A, Moravej M, Aberoumand H, Javaherdeh K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl Therm Eng. 2016;101:362–72.CrossRefGoogle Scholar
  118. 118.
    Sepyani K, Afrand M, Hemmat Esfe M. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204.CrossRefGoogle Scholar
  119. 119.
    Vakili-Nezhaad GR, Dorany A. Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chem Eng Commun. 2009;196(9):997–1007.CrossRefGoogle Scholar
  120. 120.
    Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.CrossRefGoogle Scholar
  121. 121.
    Hemmat Esfe M, Rostamian H. Non-Newtonian power-law behavior of TiO2/SAE 50 nano-lubricant: an experimental report and new correlation. J Mol Liq. 2017;232:219–25.CrossRefGoogle Scholar
  122. 122.
    Asadi A, Asadi M, Rezaee M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mohammad Hemmat Esfe
    • 1
    Email author
  • Mohammad Reza Sarmasti Emami
    • 2
  • Mahmoud Kiannejad Amiri
    • 2
  1. 1.Department of Mechanical EngineeringImam Hossein UniversityTehranIran
  2. 2.Department of Chemical EngineeringUniversity of Science and Technology of MazandaranMazandaranIran

Personalised recommendations