Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles

  • T. Raja JeyaseelanEmail author
  • N. Azhagesan
  • Vignesh Pethurajan


The thermo-physical properties of NaNO3/KNO3 (solar salt) added with Al2O3 and TiO2 nanoparticles as phase change material in thermal energy storage system were investigated. Initially the Al2O3 and TiO2 nanoparticles were added to NaNO3/KNO3 (60:40) with a concentration of 1%, 3% and 5 mass% using low-energy ball mill. The differential scanning calorimetry instrument is used to measure the thermal properties of the prepared PCM composites. It is found that the phase change temperature and latent heat capacity vary with Al2O3 and TiO2 nanoparticles loading levels. When the loading is not over 3 mass% of Al2O3, the phase change temperature drops, and the latent heat capacity increases up to 23.3%. When the loading is over 3 mass% of Al2O3, the phase change temperature increases, and the latent heat capacity drops to 14.23%. A significant increase in latent heat capacity is found around 3 mass% of Al2O3 loading. When the TiO2 nanoparticle concentration increases, the phase change temperature decreases, and the latent heat capacity increases up to 32.2%. When the TiO2 nanoparticle’s concentration decreases, the phase change temperature increases, and the latent heat capacity decreases. The thermal conductivity of the composites was found to increase with the increase in the loading of nanoparticles. After adding 3% by mass of Al2O3 and TiO2 nanoparticles, the thermal conductivity was found to increase by 8.30 and 8.10%, respectively. From the characterization studies, we found that TiO2 helps to achieve the improved thermo-physical properties and heat storage characteristics for NaNO3/KNO3 which suggests their potential candidate of usage in the thermal energy storage system.


Phase change material Thermogravimetric analysis Thermal conductivity Latent heat Thermal energy storage 



Phase change material


Differential scanning calorimetry


Thermogravimetric analysis


Scanning electron microscopy



List of symbols


Specific heat of PCM/water (J kg−1  °C)


Latent heat of phase change material (PCM) (J kg−1)


Thermal conductivity (W m−1 K−1)


Temperature (°C)



  1. 1.
    Dincer I, Rosen M. Thermal energy storage: systems and applications. Hoboken: Wiley; 2002.Google Scholar
  2. 2.
    Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;1(104):538–53.CrossRefGoogle Scholar
  3. 3.
    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.CrossRefGoogle Scholar
  4. 4.
    Farid MM, Khudhair AM, Razack SA, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.CrossRefGoogle Scholar
  5. 5.
    Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev. 2018;31(93):245–59.CrossRefGoogle Scholar
  6. 6.
    Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manag. 2015;15(105):272–84.CrossRefGoogle Scholar
  7. 7.
    Salyan S, Suresh S. Liquid metal gallium laden organic phase change material for energy storage: an experimental study. Int J Hydrogen Energy. 2018;43(4):2469–83.CrossRefGoogle Scholar
  8. 8.
    Salyan S, Suresh S. Study of thermo-physical properties and cycling stability of d-Mannitol-copper oxide nanocomposites as phase change materials. J Energy Storage. 2018;28(15):245–55.CrossRefGoogle Scholar
  9. 9.
    Huang Y, Cheng X, Li Y, Yu G, Xu K, Li G. Effect of in situ synthesized nano-MgO on thermal properties of NaNO3–KNO3. Sol Energy. 2018;15(160):208–15.CrossRefGoogle Scholar
  10. 10.
    Venkitaraj KP, Suresh S. Experimental study on thermal and chemical stability of pentaerythritol blended with low melting alloy as possible PCM for latent heat storage. Exp Thermal Fluid Sci. 2017;1(88):73–87.CrossRefGoogle Scholar
  11. 11.
    Venkitaraj KP, Suresh S, Praveen B, Venugopal A, Nair SC. Pentaerythritol with alumina nano additives for thermal energy storage applications. J Energy Storage. 2017;1(13):359–77.Google Scholar
  12. 12.
    Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;15(134):373–81.CrossRefGoogle Scholar
  13. 13.
    Chieruzzi M, Miliozzi A, Crescenzi T, Torre L, Kenny JM. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage. Nanoscale Res Lett. 2015;10(1):273.CrossRefGoogle Scholar
  14. 14.
    Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.CrossRefGoogle Scholar
  15. 15.
    Zhao YJ, Wang RZ, Wang LW, Yu N. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage). Energy. 2014;1(70):272–7.CrossRefGoogle Scholar
  16. 16.
    Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manag. 2015;15(105):272–84.CrossRefGoogle Scholar
  17. 17.
    Singh DK, Suresh S, Singh H. Graphene nanoplatelets enhanced myo-inositol for solar thermal energy storage. Therm Sci Eng Progr. 2017;1(2):1–7.Google Scholar
  18. 18.
    Singh DK, Suresh S, Singh H, Rose BA, Tassou S, Anantharaman N. Myo-inositol based nano-PCM for solar thermal energy storage. Appl Therm Eng. 2017;5(110):564–72.CrossRefGoogle Scholar
  19. 19.
    Schuller M, Shao Q, Lalk T. Experimental investigation of the specific heat of a nitrate–alumina nanofluid for solar thermal energy storage systems. Int J Therm Sci. 2015;31(91):142–5.CrossRefGoogle Scholar
  20. 20.
    Maldonado JM, Fullana-Puig M, Martín M, Solé A, Fernández ÁG, de Gracia A, Cabeza LF. Phase change material selection for thermal energy storage at high temperature range between 210°C and 270°C. Energies. 2018;11(4):861.CrossRefGoogle Scholar
  21. 21.
    Rao ZH, Zhang GQ. Thermal properties of paraffin wax-based composites containing graphite. Energy Sources Part A Recovery Util Environ Effects. 2011;33(7):587–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • T. Raja Jeyaseelan
    • 1
    Email author
  • N. Azhagesan
    • 1
  • Vignesh Pethurajan
    • 2
  1. 1.Department of Mechanical EngineeringCape Institute of TechnologyLevengipuram, TirunelveliIndia
  2. 2.Department of Mechanical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations