Advertisement

Calix[4]resorcinarene macrocycles

Synthesis, thermal behavior and crystalline characterization
  • Larbi EddaifEmail author
  • László Trif
  • Judit Telegdi
  • Orsolya Egyed
  • Abdul Shaban
Article
  • 31 Downloads

Abstract

Supramolecular chemistry is an interdisciplinary scientific field, including chemical, physical and biological properties of more complex chemical species than the molecules themselves. Calixarenes/calixresorcinarenes are macrocyclic compounds, consisting of ‘n’ phenolic/resorcinolic units linked together by methylene bridges; these macrocycles are often used for molecular recognition. Thus, different modifications can be made to both the lower and upper rim, allowing the construction of well-defined multivalent buildings. In this work, three calix[4]resorcinarene macrocycles were synthesized, namely C-dec-9-en-1-ylcalix[4]resorcinarene (CAL 11U), C-trans-2, cis-6-octa-1,5-dien-1-ylcalix[4]resorcinarene (CAL 9U) and C-nonylcalix[4]resorcinarene (CAL 10) by a simple condensation reaction. The compounds CAL 11U and CAL 10 have been already synthesized by researchers, while the CAL 9U has been synthesized for the first time. Their structures were confirmed using ATR-FTIR, 1H NMR and 13C NMR. Thermal analysis combined with mass spectrometric evolved analysis of the vapors was used to study the thermal behavior of the different synthesized molecules, and they were the subject of characterization by X-ray powder diffraction in order to analyze their degree of crystallinity.

Keywords

Calixresorcinarenes Thermal analysis FTIR XRD Synthesis 

Notes

Acknowledgements

The corresponding author would like to thank Dr. Csaba Németh for the XRD analysis and Dr. Judit Mihaly for the FTIR measurements.

References

  1. 1.
    Gutsche CD, Muthukrishnan R. Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J Org Chem. 1978;43:4905–6.  https://doi.org/10.1021/jo00419a052.CrossRefGoogle Scholar
  2. 2.
    Kahlfuss C, Métay E, Duclos M-C, Lemaire M, Oltean M, Milet A, et al. Reversible dimerization of viologen radicals covalently linked to a calixarene platform: experimental and theoretical aspects. C R Chim. 2014;17:505–11.  https://doi.org/10.1016/j.crci.2014.01.006.CrossRefGoogle Scholar
  3. 3.
    Matvieiev Y, Solovyov A, Shishkina S, Shishkin O, Katz A, Boiko V, et al. Upper-rim calixarene phosphines consisting of multiple lower-rim OH functional groups: synthesis and characterisation. Supramol Chem. 2014;26:825–35.  https://doi.org/10.1080/10610278.2014.882511.CrossRefGoogle Scholar
  4. 4.
    Pang T-T, Liu H-L, Du L-M, Chang Y-X, Fu Y-L. Supramolecular interaction of two tryptophans with p-sulfonated calix [4, 6, 8] arene. J Fluoresc. 2014;24:143–52.  https://doi.org/10.1007/s10895-013-1280-0.CrossRefPubMedGoogle Scholar
  5. 5.
    Espinas J, Pelletier J, Szeto KC, Merle N, Le Roux E, Lucas C, et al. Preparation and characterization of metallacalixarenes anchored to a mesoporous silica SBA-15 LP as potential catalysts. Microporous Mesoporous Mater. 2014;188:77–85.  https://doi.org/10.1016/j.micromeso.2013.12.031.CrossRefGoogle Scholar
  6. 6.
    Rebarz M, Marcelis L, Menand M, Cornut D, Moucheron C, Jabin I, et al. Revisited photophysics and photochemistry of a Ru-TAP complex using chloride ions and a Calix [6] crypturea. Inorg Chem. 2014;53:2635–44.  https://doi.org/10.1021/ic403024z.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu W, Liu M, Du S, Li Y, Liao W. Bridging cobalt–calixarene subunits into a Co 8 entity or a chain with 4, 4′-bipyridyl. J Mol Struct. 2014;1060:58–62.  https://doi.org/10.1016/j.molstruc.2013.12.044.CrossRefGoogle Scholar
  8. 8.
    Wang P, Saadioui M, Schmidt C, Böhmer V, Host V, Desreux JF, et al. Dendritic octa-CMPO derivatives of calix [4] arenes. Tetrahedron. 2004;60:2509–15.  https://doi.org/10.1016/j.tet.2004.01.057.CrossRefGoogle Scholar
  9. 9.
    Dam HH, Reinhoudt DN, Verboom W. Influence of the platform in multicoordinate ligands for actinide partitioning. New J Chem. 2007;31:1620.  https://doi.org/10.1039/b603847f.CrossRefGoogle Scholar
  10. 10.
    Grimes RN. Chapter 2—structure and bonding. Carboranes. 2nd ed. Oxford: Academic Press; 2011. p. 7–20.Google Scholar
  11. 11.
    Hosmane NS. Boron science: new technologies and applications. Boca Raton: CRC Press; 2011.CrossRefGoogle Scholar
  12. 12.
    Mikulášek L, Grüner B, Dordea C, Rudzevich V, Böhmer V, Haddaoui J, et al. tert-Butyl-calix [4] arenes substituted at the narrow rim with cobalt bis (dicarbollide)(1–) and CMPO groups-new and efficient extractants for lanthanides and actinides. Eur J Org Chem. 2007;2007:4772–83.CrossRefGoogle Scholar
  13. 13.
    Grűner B, Böhmer V, Dordea C, Seluckỳ P, Bubeníková M. Anionic tert-butyl-calix [4] arenes substituted at the narrow and wide rim by cobalt bis (dicarbollide)(1-) ions and CMPO-groups. Effect of stereochemistry and ratios of the functional groups on the platform on the extraction efficiency for Ln (III)/An (III). J Organomet Chem. 2013;747:155.CrossRefGoogle Scholar
  14. 14.
    Persson BR, Holm E. Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact. 2011;102:420–9.  https://doi.org/10.1016/j.jenvrad.2011.01.005.CrossRefPubMedGoogle Scholar
  15. 15.
    Bouvier-Capely C, Bonthonneau JP, Dadache E, Rebiere F. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters. Talanta. 2014;118:180–5.  https://doi.org/10.1016/j.talanta.2013.10.010.CrossRefPubMedGoogle Scholar
  16. 16.
    Bouvier-Capely C, Manoury A, Legrand A, Bonthonneau JP, Cuenot F, Rebiere F. The use of calix [6] arene molecules for actinides analysis in urine and drinking water: an alternative to current procedures. J Radioanal Nucl Chem. 2009;282:611.  https://doi.org/10.1007/s10967-009-0152-1.CrossRefGoogle Scholar
  17. 17.
    Adhikari BB, Ohto K, Schramm MP. p-tert-Butylcalix [6] arene hexacarboxylic acid conformational switching and octahedral coordination with Pb(II) and Sr (II). Chem Commun. 2014;50:1903–5.  https://doi.org/10.1039/c3cc48465c.CrossRefGoogle Scholar
  18. 18.
    Ikeda A, Suzuki Y, Yoshimura M, Shinkai S. On the prerequisites for the formation of solution complexes from [60] fullerene and calix [n] arenes: a novel allosteric effect between [60] fullerene and metal cations in calix [n] aryl ester complexes. Tetrahedron. 1998;54:2497–508.  https://doi.org/10.1016/S0040-4020(98)00012-X.CrossRefGoogle Scholar
  19. 19.
    Adhikari BB, Gurung M, Kawakita H, Ohto K. Cation complexation with p-tert-butylcalix [5] arene pentacarboxylic acid derivative: an allosteric regulation of the first metal ion for stepwise extraction of the second ion. Analyst. 2011;136:3758–69.  https://doi.org/10.1039/c1an15199a.CrossRefPubMedGoogle Scholar
  20. 20.
    Deska M, Dondela B, Sliwa W. Selected applications of calixarene derivatives. Arkivoc. 2015;6(393–41):6.  https://doi.org/10.1016/j.msec.2007.10.009.CrossRefGoogle Scholar
  21. 21.
    Chiu C-T, Chuang D-M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther. 2010;128:281–304.  https://doi.org/10.1016/j.pharmthera.2010.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gulino A. Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy. Anal Bioanal Chem. 2013;405:1479–95.  https://doi.org/10.1007/s00216-012-6394-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Ward JP, White JM, Young CG. Synthesis, characterization and metal ion complexation and extraction capabilities of calix [4] arene Schiff base compounds. Tetrahedron. 2013;69:8824–30.  https://doi.org/10.1016/j.tet.2013.05.120.CrossRefGoogle Scholar
  24. 24.
    Kaya A, Alpoguz HK, Yilmaz A. Application of Cr(VI) transport through the polymer inclusion membrane with a new synthesized calix [4] arene derivative. Ind Eng Chem Res. 2013;52:5428–36.  https://doi.org/10.1021/ie303257w.CrossRefGoogle Scholar
  25. 25.
    Ni X-L, Jin C-C, Jiang X-K, Takimoto M, Rahman S, Zeng X, et al. Tri-substituted hexahomotrioxacalix [3] arene derivatives bearing imidazole units: synthesis and extraction properties for cations and chromate anions. Org Biomol Chem. 2013;11:5435–42.  https://doi.org/10.1039/c3ob40601f.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen J-H, Hsu K-C, Chang Y-M. Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium. Ind Eng Chem Res. 2013;52:11685–94.  https://doi.org/10.1021/ie401233r.CrossRefGoogle Scholar
  27. 27.
    Sayin S, Ozcan F, Yilmaz M. Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid–liquid/solid–liquid extraction of oxyanions. Mater Sci Eng, C. 2013;33:2433–9.  https://doi.org/10.1016/j.msec.2013.02.004.CrossRefGoogle Scholar
  28. 28.
    Kamboh MA, Bhatti AA, Solangi IB, Sherazi STH, Memon S. Adsorption of direct black-38 azo dye on p-tert-butylcalix [6] arene immobilized material. Arab J Chem. 2014;7:125–31.  https://doi.org/10.1016/j.arabjc.2013.06.033.CrossRefGoogle Scholar
  29. 29.
    Bayrakcı M, Ertul Ş, Yilmaz M. Synthesis of di-substituted calix [4] arene-based receptors for extraction of chromate and arsenate anions. Tetrahedron. 2009;65:7963–8.  https://doi.org/10.1016/j.tet.2009.07.062.CrossRefGoogle Scholar
  30. 30.
    Zeng J, Guo Q, Ou-Yang Z, Zhou H, Chen H. Chromium (VI) removal from aqueous solutions by polyelectrolyte-enhanced ultrafiltration with polyquaternium. Asia-Pac J Chem Eng. 2014;9:248–55.  https://doi.org/10.1002/apj.1764.CrossRefGoogle Scholar
  31. 31.
    Sayin S, Eymur S, Yilmaz M. Anion extraction properties of a new “proton-switchable” terpyridin-conjugated calix [4] arene. Ind Eng Chem Res. 2014;53:2396–402.  https://doi.org/10.1021/ie4020233.CrossRefGoogle Scholar
  32. 32.
    Gulino A, Lupo F, Cristaldi DA, Pappalardo S, Capici C, Gattuso G, et al. A viable route for lithium ion detection. Eur J Inorg Chem. 2014;2014:442–9.  https://doi.org/10.1002/ejic.201301213.CrossRefGoogle Scholar
  33. 33.
    Cristaldi DA, Fragala I, Pappalardo A, Toscano RM, Ballistreri FP, Tomaselli GA, et al. Sensing of linear alkylammonium ions by a 5-pyrenoylamido-calix [5] arene solution and monolayer using luminescence measurements. J Mater Chem. 2012;22:675–83.  https://doi.org/10.1039/c1jm13475b.CrossRefGoogle Scholar
  34. 34.
    Ma Y-H, Yuan R, Chai Y-Q, Liu X-L. A new aluminum (III)-selective potentiometric sensor based on N, N′-propanediamide bis (2-salicylideneimine) as a neutral carrier. Mater Sci Eng, C. 2010;30:209–13.  https://doi.org/10.1016/j.msec.2009.10.005.CrossRefGoogle Scholar
  35. 35.
    Echabaane M, Rouis A, Bonnamour I, Ouada HB. Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix [4] arene derivative. Spectrochim Acta A Mol Biomol Spectrosc. 2013;115:269–74.  https://doi.org/10.1016/j.saa.2013.06.053.CrossRefPubMedGoogle Scholar
  36. 36.
    Mlika R, Rouis A, Bonnamour I, Ouada HB. Impedance spectroscopic investigation of the effect of thin azo-calix [4] arene film type on the cation sensitivity of the gold electrodes. Mater Sci Eng, C. 2011;31:1466–71.  https://doi.org/10.1016/j.msec.2011.05.017.CrossRefGoogle Scholar
  37. 37.
    Sun Y, Zhang F, Zhang L, Luo L, Zou Z-L, Cao X-L, et al. Synthesis of calix[4]arene derivatives via a Pd-catalyzed Sonogashira reaction and their recognition properties towards phenols. Chin Chem Lett. 2014;25:226–8.  https://doi.org/10.1016/j.cclet.2013.10.019.CrossRefGoogle Scholar
  38. 38.
    Düker MH, Schäfer H, Zeller M, Azov VA. Rationally designed calix[4]arene–pyrrolotetrathiafulvalene receptors for electron-deficient neutral guests. J Org Chem. 2013;78:4905–12.  https://doi.org/10.1021/jo400502.CrossRefPubMedGoogle Scholar
  39. 39.
    Pansuriya PB, Parekh HM, Maguire GE, Friedrich HB. Tetramethoxy resorcin [4] arene-tetraester derivatives. J Therm Anal Calorim. 2015;120:653–65.  https://doi.org/10.1007/s10973-014-4314-1.CrossRefGoogle Scholar
  40. 40.
    Arena G, Pappalardo A, Pappalardo S, Gattuso G, Notti A, Parisi MF, et al. Complexation of biologically active amines by a water-soluble calix [5] arene. J Therm Anal Calorim. 2015;121:1073–9.  https://doi.org/10.1007/s10973-015-4522-3.CrossRefGoogle Scholar
  41. 41.
    Mokhtari B, Pourabdollah K. Binding mechanisms of nano-baskets toward alkali metals. J Therm Anal Calorim. 2012;110:1043–51.  https://doi.org/10.1007/s10973-011-2014-7.CrossRefGoogle Scholar
  42. 42.
    Gabdulkhaev MN, Gatiatulin AK, Ziganshin MA, Gorbatchuk VV. Nonlinear effect of two remembered guests in their mixtures on the host memory for guest inclusion and release. J Therm Anal Calorim. 2016;126:627–32.  https://doi.org/10.1007/s10973-016-5558-8.CrossRefGoogle Scholar
  43. 43.
    Karakuş ÖÖ, Çilgi GK, Deligöz H. Thermal analysis of two series mono-and di-azocalix [4] arene derivatives. J Therm Anal Calorim. 2011;105:341–7.  https://doi.org/10.1007/s10973-011-1331-1.CrossRefGoogle Scholar
  44. 44.
    Elçin S, Çılgı GK, Karakuş ÖÖ, Deligöz H. A study on thermal behaviors of mono ethyl ester azocalix[4]arene derivatives. J Therm Anal Calorim. 2014;118:719–22.  https://doi.org/10.1007/s10973-014-3718-2.CrossRefGoogle Scholar
  45. 45.
    Utzig E, Pietraszkiewicz O, Pietraszkiewicz M. Thermal analysis of calix[4]resorcinarene complexes with secondary and tertiary amines. J Therm Anal Calorim. 2004;78:973–80.  https://doi.org/10.1007/s10973-005-0463-0.CrossRefGoogle Scholar
  46. 46.
    Khabibullin AA, Safina GD, Ziganshin MA, Gorbatchuk VV. Thermal analysis of charge-transfer complex formed by nitrogen dioxide and substituted calix[4]arene. J Therm Anal Calorim. 2012;110:1309–13.  https://doi.org/10.1007/s10973-011-2105-5.CrossRefGoogle Scholar
  47. 47.
    Saponar A, Popovici E-J, Perhaita I, Nemes G, Cadis A-I. Thermal behaviour of some ester derivatives of p-tert-butyl calix[n]arene. J Therm Anal Calorim. 2012;110:349–56.  https://doi.org/10.1007/s10973-012-2415-2.CrossRefGoogle Scholar
  48. 48.
    Azov VA, Skinner PJ, Yamakoshi Y, Seiler P, Gramlich V, Diederich F. Functionalized and partially or differentially bridged resorcin[4]arene cavitands: synthesis and solid-state structures. Helv Chim Acta. 2003;86:3648–70.  https://doi.org/10.1002/hlca.200390310.CrossRefGoogle Scholar
  49. 49.
    Shen M, Sun Y, Han Y, Yao R, Yan C. Strong deaggregating effect of a novel polyamino resorcinarene surfactant on gold nanoaggregates under microwave irradiation. Langmuir. 2008;24:13161–7.  https://doi.org/10.1021/la8019588.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Light Industry and Environmental Engineering, Doctoral School of Materials Sciences and TechnologiesÓbuda UniversityBudapestHungary
  2. 2.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Instrumentation Center, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations