Physicochemical characterization of the vegetal drug and nebulized extract of the roots from Apodanthera congestiflora Cogn. (Cucurbitaceae)

An efficient experience in quality control of plant raw materials
  • Helimarcos Nunes Pereira
  • Geovani Pereira Guimarães
  • Dilma Maria de Melo Trovão
  • Harley da Silva Alves


Apodanthera congestiflora Cogn. is a Brazilian Cucurbitaceae, known for its anti-inflammatory and antiparasitic activities. The objective of this work was to determine the physicochemical characteristics of the vegetal drug (VD) and the nebulized aqueous extract (NAE) from A. congestiflora using official methods and other analytical techniques: scanning electron microscopy, energy-dispersive spectrometry (EDS), thermal analysis (TG/DTA), X-ray diffraction and infrared, applied in the characterization of plant extracts. The VD and NAE presented varied granulometry and acceptable moisture, ash, pH and density. X-ray diffraction and scanning electron microscopy have suggested that the particles of the compounds analyzed are amorphous, with different sizes. The thermal decomposition of the vegetal raw material occurred in four stages, with characteristic events of the loss of free water, volatile substances, bound water to herbal products and organic compounds, besides the presence of inorganic material, verified in elemental analysis in EDS. The curves observed in the DTA showed three peaks, the first being endothermic and others exothermic. Such characteristics have confirmed the preliminary analysis of sieving, ash content and moisture. Phytochemical screening showed positive results for saponins, alkaloids and polysaccharides, and in the semiquantitative assays, the values were 59.84 ± 1.24 mg g−1 for total polyphenols, 55.28 ± 7.14 mg g−1 for tannins and 34.78 ± 2.79 mg g−1 for flavonoids. Infrared spectra showed characteristic peaks of O–H, C–H, C=O, C=C and C–O groups, which together with the results of the phytochemical analysis reinforce the presence of these phytochemicals. The results revealed that the analytical techniques allowed the joint characterization of the VD and the NAE, providing subsidies for the obtaining of a phytotherapic.


Thermoanalytical techniques Quality control Herbal remedies Genus Apodanthera 



The research was supported by CAPES/Ministry of Education; Laboratory of Evaluation and Development of Northeastern Biomaterials—CERTBIO/UEPB/UFCG; and National Institute of Semiarid—INSA.


  1. 1.
    Kumar M, Alok S, Jain SK, Dixit VK. Macroscopial, anatomical and physico-chemical studies on fruits of Coccinia indica Wight & Arn. (Cucurbitaceae). Asian Pac J Trop Dis. 2014;4:121–8.CrossRefGoogle Scholar
  2. 2.
    Silva JMC, Tabarelli M, Fonseca MT, Lins LV. Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Brasília: Ministério do Meio Ambiente-Universidade Federal de Pernambuco-Conservation International-Biodiversitas-Embrapa Semi-árido; 2003.Google Scholar
  3. 3.
    Eiten G. Vegetação do cerrado. Em: M. N. Pinto (Ed.) Cerrado: Caracterização, ocupação e perspectivas Brasília: Editora da Universidade de Brasília; 1994. p. 17–73.Google Scholar
  4. 4.
    Krol MS, Jaegar A, Bronstert A, Krywkow J. The semiarid integrated model (SDIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Phys Chem Earth (B). 2001;26:529–33.CrossRefGoogle Scholar
  5. 5.
    Por FD, Imperatriz-Fonseca VL, Lencioni Neto F. Biomes of Brazil: Na illustrated natural history/Biomas do Brasil: Uma história natural ilustrada. Sofia: Pensoft Publishers; 2005.Google Scholar
  6. 6.
    Abílio FJP, Florentino HS, Ruffo TLM. Educação Ambiental no Bioma Caatinga: formação continuada de professores de escolas públicas de São João do Cariri, Paraíba. Pesq Educ Ambient. 2010;5:171–93.CrossRefGoogle Scholar
  7. 7.
    Roque AA, Rocha RM, Loiola MIB. Uso e diversidade de plantas medicinais da Caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte (Nordeste do Brasil). Rev Bras Plantas Med. 2010;12:31–42.CrossRefGoogle Scholar
  8. 8.
    Cechinel Filho V, et al. Medicamentos de origem vegetal: atualidades, desafios e perspectivas. Itajaí: Ed. UNIVALI; 2015.Google Scholar
  9. 9.
    Orhanie, et al. Neurobiological evaluation of thirty-one medicinal plant extracts using microtiter enzyme assays. Clin Phytosci. 2017;2(1):9.CrossRefGoogle Scholar
  10. 10.
    Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally MF. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J Herb Med. 2016;6:88–95.CrossRefGoogle Scholar
  11. 11.
    Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: da planta ao medicamento. 6 ed. Porto Alegre/Florianópolis Ed.Universidade/UFRGS/Ed. da UFSC; 2010.Google Scholar
  12. 12.
    Malone MH. The pharmacological evaluation of natural products: general and specific approaches to screening ethnopharmaceuticals. J Ethnopharmacol. 1983;8:127–47.CrossRefGoogle Scholar
  13. 13.
    Giulietti AM, Bocage Neta AL, Castro AAJF, Gamarra-Rojas CFL, Sampaio EVSB, Virgínio JF et al. Diagnóstico da vegetação nativa do bioma Caatinga. Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação; 2004. p. 48–90.Google Scholar
  14. 14.
    Roque AA, Loiola MIB. Potencial de uso dos recursos vegetais em uma comunidade rural no semiárido potiguar. Re. Caatinga. 2013;26:88–98.Google Scholar
  15. 15.
    Akjhisa T, et al. Sterols of the Cucurbitaceae. Phytochemistry. 1987;26:1693–700.CrossRefGoogle Scholar
  16. 16.
    Kumar N, Singh P, Kumar S. Physical, X-ray diffraction and scanning electron microscopic studies of uroliths. Indian J Biochem Biophys. 2006;43:226–32.Google Scholar
  17. 17.
    Matos FJA. Introduction to experimental phytochemistry. 2nd ed. Fortaleza: UFC; 1997.Google Scholar
  18. 18.
    Chandra S, Gonzalez ME. Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J Agric Food Chem. 2004;52:3583–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Meda A, Lamien CE, Romito M, Millogo JNO. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005;91:571–7.CrossRefGoogle Scholar
  20. 20.
    Makkar HPS, Becker K. Vanillin-HCl method for condensed tannins: Effect of organic solvents used for extraction of tannins. J Chem Ecol. 1993;19:613–21.CrossRefGoogle Scholar
  21. 21.
    Brasil. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira, volume 1. 5ª Ed. Brasilia; 2010.Google Scholar
  22. 22.
    Barbosa WLR. Manual for phytochemical and chromatographic analysis of plant extracts. Belém: Federal University of Pará (UFPA); 2001.Google Scholar
  23. 23.
    Cortés-Rojas DF, Oliveira WP. Physicochemical properties of phytopharmaceutical preparations as affected by drying methods and carriers. Dry Technol. 2012;30:921–34.CrossRefGoogle Scholar
  24. 24.
    Silverstein RM, Bassler GC, Morrill TC. Identificação espectrométrica de compostos orgânicos. 6th ed. New York: Wiley; 2000.Google Scholar
  25. 25.
    Pavia DL, Lampan GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Boston: Cengage Learning; 2010.Google Scholar
  26. 26.
    Hussain AI, Rathore HA, Sattar MZA, Chatha SAS, Ahmad F, Ahmad A, et al. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind Crops Prod. 2013;45:416–22.CrossRefGoogle Scholar
  27. 27.
    Chekroun E, Benariba N, Adida H, Bechiri A, Azzi R, Djaziri R. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots. Asian Pac J Trop Dis. 2015;8:632–7.CrossRefGoogle Scholar
  28. 28.
    Correia LP, Procópio JVV, Santana CP, Pinto MF, Moura EA, Santos AFO, Macêdo RO. Herbal medicine physical quality evaluation by thermal analysis using adapted Ozawa method. J Therm Anal Calorim. 2015;122:207–14.CrossRefGoogle Scholar
  29. 29.
    Guimarães GP, Santos RL, Brandão DO, Cartaxo-Furtado NAO, Cavalcanti ALM, Macedo RO. Thermoanalytical characterization of herbal drugs from Poincianella pyramidalis in different particle sizes. J Therm Anal Calorim. 2018;131:661–70.CrossRefGoogle Scholar
  30. 30.
    Brandão DO, Guimarães GP, Santos RL, Júnior FJLR, Silva KMA, Souza FS, Macêdo RO. Model analytical development for physical, chemical and biological characterization of Momordica charantia vegetable drug. J Anal Methods Chem. 2016;2016:1–15.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Helimarcos Nunes Pereira
    • 1
  • Geovani Pereira Guimarães
    • 2
  • Dilma Maria de Melo Trovão
    • 1
  • Harley da Silva Alves
    • 1
  1. 1.Post-graduate Program in Pharmaceutical SciencesState University of ParaíbaCampina GrandeBrazil
  2. 2.University Hospital Alcides CarneiroFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations