Systematic microstructural development with thermal diffusivity behaviour from nanometric to micronic grains of strontium titanate

  • Idza Riati IbrahimEmail author
  • Mansor Hashim
  • Ismayadi Ismail
  • Khamirul Amin Matori
  • Raba’ah Syahidah Azis
  • Rodziah Nazlan
  • Nor Hapishah Abdullah
  • Wan Norailiana Wan Ab Rahman
  • Fadzidah Mohd Idris
  • Norni Hidayawati Mat Daud


Strontium titanate is a promising candidate for applications in thermoelectric, thermal management applications, and modern electronic devices because of its desirable thermal stability, chemical stability, and semiconducting behaviour. However, the absence of its important systematic development, having grain size from several nanometric up to micronic size with evolving thermal diffusivity behaviour, triggers the need for filling up the vacuum. Two different heat treatments have been carried out onto the samples which were with presintering and without presintering. Nanometer-sized compacted powder samples were sintered from 500 to 1400 °C using 100 °C increments. The parallel characterizations of structural, microstructural and thermal diffusivity properties were systematically carried out. Interestingly, three significant value-differentiated groups: weak, moderate, and strong thermal diffusivity were observed, resulting from the influence of different phonon-scattering mechanisms through a systematic development of microstructural properties for both heat treatments.


Thermal diffusivity Thermal conductivity Microstructure Strontium titanate 



The authors are grateful to Ministry Education Malaysia for MyPhD scholarship and supports from the Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology and Department of Physics, Faculty of Science, Universiti Putra Malaysia are also acknowledged.


  1. 1.
    Hui S, Petric A. Electrical properties of yttrium-doped strontium titanate under reducing conditions. J Electrochem Soc. 2002;149:J1.CrossRefGoogle Scholar
  2. 2.
    Rocca A, Licciulli A, Politi M, Diso D. Rare earth-doped SrTiO3 perovskite formation from xerogels. ISRN Ceram. 2012;2012:1–6.CrossRefGoogle Scholar
  3. 3.
    Silva MRS, Alves MCF, Lima SJG, Soledade LEB, Paris EC, Longo E, et al. Thermal and structural characterization of SrTi1−xNdxO3. J Therm Anal Calorim. 2009;97(2):559–64.CrossRefGoogle Scholar
  4. 4.
    Hulm JK. The dielectric properties of some alkaline earth titanates at low temperatures. Proc Phys Soc A. 1950;63:1184–5.CrossRefGoogle Scholar
  5. 5.
    Ichinose N, Komeya K, Ogino N, Tsuge A, Yokomizo Y. Introduction to fine ceramics applications in engineering. Hoboken: Wiley; 1987.Google Scholar
  6. 6.
    Wang Y, Fujinami K, Zhang R, Wan C, Wang N, Ba Y, et al. Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl Phys Express. 2010;3(3):4–7.CrossRefGoogle Scholar
  7. 7.
    Shang P-P, Zhang B-P, Li J-F, Ma N. Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol–gel process and spark plasma sintering. Solid State Sci. 2010;12(8):1341–6.CrossRefGoogle Scholar
  8. 8.
    Smith Á, Martin C, Fayette S, Smith DS. Influence of grain size on the thermal conductivity of tin oxide ceramics. J Eur Ceram Soc. 2000;20:297–302.CrossRefGoogle Scholar
  9. 9.
    Rauf A, Yu Q, Jin L, Zhou C. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scr Mater. 2012;66(2):109–12.CrossRefGoogle Scholar
  10. 10.
    Søndergaard M, Bøjesen ED, Borup KA, Christensen S, Christensen M, Iversen BB. Sintering and annealing effects on ZnO microstructure and thermoelectric properties. Acta Mater. 2013;61(9):3314–23.CrossRefGoogle Scholar
  11. 11.
    Chung W. Thermal properties of nano- and microstructures. Pasadena: California Institute of Technology; 2004.Google Scholar
  12. 12.
    Braginsky L, Shklover V, Hofmann H, Bowen P. High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys Rev B. 2004;70(13):134201.CrossRefGoogle Scholar
  13. 13.
    Wang FFY. Treatise on materials science and technology: ceramic fabrication processes, vol. 9. Cambridge: Academic Press; 1976.Google Scholar
  14. 14.
    Tunç Parlak T, Apaydin F, Yildiz K. Formation of SrTiO3 in mechanically activated SrCO3–TiO2 system. J Therm Anal Calorim. 2017;127(1):63–9.CrossRefGoogle Scholar
  15. 15.
    Somiya S. Advanced technical ceramics. Tokyo: Academic Press; 2012.Google Scholar
  16. 16.
    Carter CB, Norton MG. Ceramic materials: science and engineering. New York: Springer; 2013.CrossRefGoogle Scholar
  17. 17.
    Szelagowski H, Arvanitidis I, Seetharaman S, Szelagowski H, Arvanitidis I, Seetharaman S. Effective thermal conductivity of porous strontium oxide and strontium carbonate samples. J Appl Phys. 1999;1999(85):193–8.CrossRefGoogle Scholar
  18. 18.
    Widodo RD, Manaf A, Viktor RRV, Al-Janan DH. The effect of milling times and annealing on synthesis of strontium titanate ceramics. Int J Innov Res Adv Eng. 2015;2(12):66–70.Google Scholar
  19. 19.
    Ianculescu A, Bráileanu A, Zaharescu M, Guillemet S, Pasuk I, Madarász J, et al. Formation and properties of some Nb-doped SrTiO3-based solid solutions. J Therm Anal Calorim. 2003;72(1):173–80.CrossRefGoogle Scholar
  20. 20.
    Buscaglia MT, Maglia F, Anselmi-Tamburini U, Marré D, Pallecchi I, Ianculescu A, et al. Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics. J Eur Ceram Soc. 2014;34(2):307–16.CrossRefGoogle Scholar
  21. 21.
    Sundaram SK, Spearing DR, Vienna JD. Environmental issues and waste management technologies in the ceramic and nuclear industries VIII. In: Proceedings of the symposium held at the 104th annual meeting of The American Ceramic Society. Wiley; 2012.Google Scholar
  22. 22.
    Kaus I, Dahl PI, Mastin J, Grande T, Einarsrud MA. Synthesis and characterization of nanocrystalline YSZ powder by smoldering combustion synthesis. J Nanomater. 2006;2006:1–7.CrossRefGoogle Scholar
  23. 23.
    Wang H. Thermal conductivity 27: thermal expansion 15: joint conferences. Tennessee: DEStech Publications, Inc; 2005.Google Scholar
  24. 24.
    Eibl O, Nielsch K, Peranio N, Völklein F. Thermoelectric Bi2Te3 nanomaterials. Hoboken: Wiley; 2015.Google Scholar
  25. 25.
    Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A. Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl Phys Lett. 2008;92(19):191911.CrossRefGoogle Scholar
  26. 26.
    Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11(11):2027–35.CrossRefGoogle Scholar
  27. 27.
    Gapais D, Brun JP, Cobbold PR. Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. London: Geological Society of London; 2005.Google Scholar
  28. 28.
    Belyakov A, Yoshikazu S, Toru H, Yuuji K, Kaneaki T. Effect of nano-sized oxides on annealing behaviour of ultrafine grained steels. Mater Trans. 2004;45:2252–8.CrossRefGoogle Scholar
  29. 29.
    Hummel RE. Understanding materials science: history, properties, applications. Florida: Springer; 2004.Google Scholar
  30. 30.
    Zgalat-Lozynskyy O, Ragulya A. Densification kinetics and structural evolution during microwave and pressureless sintering of 15 nm titanium nitride powder. Nanoscale Res Lett. 2016;11(1):1–9.CrossRefGoogle Scholar
  31. 31.
    Parkash O, Kumar D, Christopher CC. Preparation structure and dielectric behaviour of the system Sr1−xLaxTi1–xFexO3 (x ≤ 0.50). J Chem Sci. 2003;115(5–6):649–61.CrossRefGoogle Scholar
  32. 32.
    Roy SC, Bhatnagar C, Sharma GL, Karar N, Chander H. Photoluminescence study of the sol-gel derived (Ba0.5Sr0.5)TiO3 thin films for the characterization of trap states. Jpn J Appl Phys. 2005;44:34–7.CrossRefGoogle Scholar
  33. 33.
    Faoite D, Browne DJ, Chang-Díaz FR, Stanton KT. A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J Mater Sci. 2011;47(10):4211–35.CrossRefGoogle Scholar
  34. 34.
    Bruls RJ, Hintzen HT, Metselaar R. A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds. J Eur Ceram Soc. 2005;25(6):767–79.CrossRefGoogle Scholar
  35. 35.
    Zhang L, Li N, Wang HQ, Zhang Y, Ren F, Liao XX, et al. Tuning the thermal conductivity of strontium titanate through annealing treatments. Chin Phys B. 2017;26(1):1–6.Google Scholar
  36. 36.
    Gorsse S, Bauer Pereira P, Decourt R, Sellier E. Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater. 2010;22(3):988–93.CrossRefGoogle Scholar
  37. 37.
    Muta H, Ieda A, Kurosaki K, Yamanaka S. Thermoelectric properties of lanthanum-doped europium titanate. Mater Trans. 2005;46(7):1466–9.CrossRefGoogle Scholar
  38. 38.
    Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr Mater. 1998;39(8):1119–25.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Idza Riati Ibrahim
    • 1
    Email author
  • Mansor Hashim
    • 1
  • Ismayadi Ismail
    • 1
  • Khamirul Amin Matori
    • 1
    • 2
  • Raba’ah Syahidah Azis
    • 1
    • 2
  • Rodziah Nazlan
    • 3
  • Nor Hapishah Abdullah
    • 1
  • Wan Norailiana Wan Ab Rahman
    • 1
  • Fadzidah Mohd Idris
    • 4
  • Norni Hidayawati Mat Daud
    • 5
  1. 1.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Putra Malaysia (UPM)SerdangMalaysia
  3. 3.Department of Materials Technology, Faculty of Industrial Science and TechnologyUniversiti Malaysia Pahang, Kampus GambangKuantanMalaysia
  4. 4.PERMATA Insan CollegeUniversiti Sains Islam MalaysiaNilaiMalaysia
  5. 5.Centre of Pre-UniversityUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations