Comparison of the kinetic behavior of crystalline cane and beet sucrose thermal decomposition

  • Ben Averill
  • Leonard C. Thomas
  • Kiran Subedi
  • Shelly J. SchmidtEmail author


Although crystalline cane and beet sucrose are > 99.8% pure, they exhibit different thermal behavior. In general, the cane sucrose DSC curve contains a small endothermic peak before the main endothermic peak, which is not present in the beet DSC curve, leading to a lower onset temperature for thermal decomposition in cane. To compare their thermal behavior, the thermal decomposition kinetic parameters for analytical and commercial cane sucrose and commercial beet sucrose were determined. Beet sucrose had a higher activation energy than either cane source, indicating that thermal decomposition is inhibited in beet sucrose. However, the k values from isothermal experiments at a single temperature did not match the nonisothermally predicted k values, suggesting that, while useful for comparison, the nonisothermal kinetic parameters cannot be used to predict the behavior of sucrose thermal decomposition under isothermal conditions.


Sucrose Thermal decomposition Nonisothermal kinetics DSC 



Differential scanning calorimetry


Quasi-isothermal modulated DSC


High-performance liquid chromatography


Inductively coupled Plasma Optical Emission Spectroscopy


Onset temperature


Activation energy


Pre-exponential factor


Rate constant





The authors would like to acknowledge the assistance of Dr. Michelle Schwenk and Dr. Joanne Mayer of the Archer Daniels Midland Company with gathering and analyzing HPLC data.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

10973_2018_7946_MOESM1_ESM.pdf (119 kb)
Supplementary material 1 (PDF 119 kb)


  1. 1.
    Sugar: World markets and trade. 2016.Google Scholar
  2. 2.
    Godshall MA. Industrial uses of sugar. London: Informa Agra; 2013.Google Scholar
  3. 3.
    McConnell MJ. Sugar and sweeteners yearbook tables [Internet]. USDA Econ. Res. Serv. 2017. Sugar Supply and Use.
  4. 4.
    Lu Y. Investigating the thermal behavior differences between beet and cane sugar sources. 2016.Google Scholar
  5. 5.
    Beckett ST, Francesconi MG, Geary PM, Mackenzie G, Maulny APE. DSC study of sucrose melting. Carbohydr Res. 2006;341:2591–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Lee JW, Thomas LC, Schmidt SJ. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). J Agric Food Chem. 2011;59:684–701.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee JW, Thomas LC, Jerrell J, Feng H, Cadwallader KR, Schmidt SJ. Investigation of thermal decomposition as the kinetic process that causes the loss of crystalline structure in sucrose using a chemical analysis approach (part II). J Agric Food Chem. 2011;59:702–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Saavedra-Leos MZ, Grajales-Lagunes A, González-García R, Toxqui-Terán A, Pérez-García SA, Abud-Archila MA, et al. Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose. J Food Sci. 2012;77:118–26.CrossRefGoogle Scholar
  9. 9.
    Magon A, Wurm A, Schick C, Pangloli P, Zivanovic S, Skotnicki M, et al. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim Acta. 2014;589:183–96.CrossRefGoogle Scholar
  10. 10.
    Kinugawa K, Kinuhata M, Kagotani R, Imanaka H, Ishida N, Kitamatsu M, et al. Inhibitory effects of additives and heat treatment on the crystallization of freeze-dried sugar. J Food Eng. 2015;155:37–44.CrossRefGoogle Scholar
  11. 11.
    Hurtta M, Pitkänen I, Knuutinen J. Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr Res. 2004;339:2267–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Lu Y, Thomas L, Schmidt S. Differences in the thermal behavior of beet and cane sucrose sources. J Food Eng. 2017;201:57–70. Scholar
  13. 13.
    Schwenk M. Investigating the loss of crystal structure in carbohydrate materials. Champaign: University of Illinois at Urbana-Champaign; 2016.Google Scholar
  14. 14.
    Andrews LS, Godshall MA. Comparing the effects of sulphur dioxide on model sucrose and cane juice systems. J Am Soc Sugarcane Technol. 2002;22:90–101.Google Scholar
  15. 15.
    Clarke MA, Godshall MA, editors. Chemistry and processing of sugarbeet and sugarcane. New York: Elsevier; 1988.Google Scholar
  16. 16.
    McGinnis RA, Cossairt GW. Sulfitation. In: McGinnis RA, editor. Beet-Sugar technol. 3rd ed. Fort Collins: Beet Sugar Development Foundation; 1982. p. 265–74.Google Scholar
  17. 17.
    Ingles DL. Chemistry of non-enzymatic browning. V. The preparation of aldose-potassium bisulfite addition compounds and some amine derivatives. Aust J Chem. 1959;12:97–101.Google Scholar
  18. 18.
    McWeeny DJ. The chemistry of nonenzymatic browning in foods and its control by sulfites. J Sci Food Agric. 1974;25:735.CrossRefGoogle Scholar
  19. 19.
    Shore M, Broughton NW, Dutton JV, Sissons A. Factors affecting white sugar color. Sugar Technol Rev. 1984;12:1–99.Google Scholar
  20. 20.
    Shi Y. Existence of the sugar-bisulfite adducts and its inhibiting effect on degradation of monosaccharide in acid system. Appl Biochem Biotechnol. 2014;172:1612–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu Y, Yin L, Gray DL, Thomas LC, Schmidt SJ. Impact of sucrose crystal composition and chemistry on its thermal behavior. J Food Eng. 2017;214:193–208.CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Ager DJ, Alexander KS, Bhatti AS, Blackburn JS, Dollimore D, Koogan TS, et al. Stability of aspirin in solid mixtures. J Pharm Sci. 1986;75:97–101.CrossRefPubMedGoogle Scholar
  24. 24.
    Ghaderi F, Nemati M, Siahi-Shadbad MR, Valizadeh H, Monajjemzadeh F. DSC kinetic study of the incompatibility of doxepin with dextrose. J Therm Anal Calorim. 2016;123:2081–90. Scholar
  25. 25.
    Marian E, Tita B, Tita IC, Jurca T, Vicas L. Thermal behaviour and kinetic study of amygdalin. J Therm Anal Calorim. 2018;134:765–72. Scholar
  26. 26.
    Hao YH, Huang Z, Ye QQ, Wang JW, Yang XY, Fan XY, et al. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim. 2017;128:1077–91.CrossRefGoogle Scholar
  27. 27.
    Mothé CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calorim. 2018;131:397–404. Scholar
  28. 28.
    Abd-Elrahman MI, Ahmed SM. Thermal degradation kinetics and geometrical stability of d-sucrose. Int J Polym Mater. 2009;58:322–35.CrossRefGoogle Scholar
  29. 29.
    Lee JW, Thomas LC, Schmidt SJ. Kinetics of apparent melting for sucrose, glucose, and fructose. In: 2011 IFT annual meeting. New Orleans, LA; 2011.Google Scholar
  30. 30.
    ICUMSA. ICUMSA method GS1/2/3/4/7/8/9-23: the determination of ph by direct method—in raw sugar, molasses, juices, and syrups—official. Berlin, Germany: Verlag Dr. Albert Bartens KG; 2009.Google Scholar
  31. 31.
    ICUMSA. ICUMSA method GS1/3/4/7/8-13: the determination of conductivity ash in raw sugar, brown sugar, juice, syrup and molasses—official. Berlin, Germany: Verlag Dr. Albert Bartens KG; 1994.Google Scholar
  32. 32.
    Megazyme. K-ETSULPH assay procedure. Wicklow, Ireland: Megazyme International; 2015. p. 11.Google Scholar
  33. 33.
    Lu Y, Thomas LC, Jerrell JP, Cadwallader KR, Schmidt SJ. Investigating the thermal decomposition differences between beet and cane sucrose sources. J Food Meas Charact. 2017;11:1640–53. Scholar
  34. 34.
    Burnham AK. Computational aspects of kinetic analysis. Part D: The ICTAC kinetics project—multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355:165–70.CrossRefGoogle Scholar
  35. 35.
    Vyazovkin SV, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. Scholar
  36. 36.
    Brown ME, Maciejewski M, Vyazovkin SV, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  37. 37.
    ASTM E698-11. Annu. B. ASTM Stand. 2005. p. 1–8.Google Scholar
  38. 38.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  39. 39.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.CrossRefGoogle Scholar
  40. 40.
    Duswalt AA. The practice of obtaining kinetic data by differential scanning calorimetry. Thermochim Acta. 1974;8:57–68.CrossRefGoogle Scholar
  41. 41.
    Clarke MA, Edye LA, Eggleston G. Sucrose decomposition in aqueous solution, and losses in sugar manufacture and refining. Adv Carbohydr Chem Biochem. 1997;52:441–70.CrossRefGoogle Scholar
  42. 42.
    Richards GN. Initial steps in thermal degradation of sucrose. Int Sugar J. 1986;88:145–8.Google Scholar
  43. 43.
    Richards G, Shafizadeh F. Mechanism of thermal degradation of sucrose. A preliminary study. Aust J Chem. 1978;31:1825–32.CrossRefGoogle Scholar
  44. 44.
    Quintas MAC, Brandão TRS, Silva CLM. Modelling autocatalytic behaviour of a food model system-Sucrose thermal degradation at high concentrations. J Food Eng. 2007;78:537–45.CrossRefGoogle Scholar
  45. 45.
    Lowary TL, Richards GN. Effects of impurities on hydrolysis of sucrose in concentrated aqueous solution. Int Sugar J. 1988;90:164–7.Google Scholar
  46. 46.
    Richards GN. Chapter 16—effects of impurities on degradation of sucrose under processing conditions. Chem Process Sugarbeet Sugarcane. 1988; p. 253–64.
  47. 47.
    Eggleston G, Trask-Morrell BJ, Vercellotti JR. Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues. J Agric Food Chem. 1996;44:3319–25.CrossRefGoogle Scholar
  48. 48.
    Thomas LC. Modulated DSC Technology. TA Instruments; 2006.Google Scholar
  49. 49.
    Kelly FHC, Brown DW. Thermal decomposition and color formation in aqueous sucrose solutions. Sugar Technol Rev. 1978;6:1–47.Google Scholar
  50. 50.
    Mauch W. The chemical properties of sucrose. Sugar Technol Rev. 1971;1:139–290.Google Scholar
  51. 51.
    Schoebel T, Tannenbaum SR, Labuza TP. Reaction at limited water concentration 1. Sucrose hydrolysis. J Food Sci. 1969;34:324–9.CrossRefGoogle Scholar
  52. 52.
    Vukov K. Kinetic aspects of sucrose hydrolysis. Int Sugar J. 1965;67:172–5.Google Scholar
  53. 53.
    Poncini L. Thermal degradation of sucrose in solution. Int Sugar J. 1980;82:332–5.Google Scholar
  54. 54.
    Rodushkin I, Baxter DC, Engström E, Hoogewerff J, Horn P, Papesch W, et al. Elemental and isotopic characterization of cane and beet sugars. J Food Compos Anal. 2011;24:70–8.CrossRefGoogle Scholar
  55. 55.
    Lee JW, Thomas LC, Schmidt SJ. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)? J Agric Food Chem. 2011;59:3306–10.CrossRefPubMedGoogle Scholar
  56. 56.
    Brazeau BJ, Lipscomb JD. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates†. Biochemistry. 2000;39:13503–15.CrossRefPubMedGoogle Scholar
  57. 57.
    Wollenhaupt M, Carl SA, Horowitz A, Crowley JN. Rate coefficients for reaction of OH with acetone between 202 and 395 K. J Phys Chem A. 2000;104:2695–705.CrossRefGoogle Scholar
  58. 58.
    Masgrau L, Gonzalez-Lafont A, Lluch JM. Variational transition-state theory rate constant calculations with multidimensional tunneling corrections of the reaction of acetone with OH. J Phys Chem A. 2002;110:352–7.Google Scholar
  59. 59.
    Masgrau L, González-Lafont À, Lluch JM. The curvature of the Arrhenius plots predicted by conventional canonical transition-state theory in the absence of tunneling. Theor Chem Acc. 2003;110:352–7.CrossRefGoogle Scholar
  60. 60.
    Flynn JH. Thermal analysis kinetics-problems, pitfalls and how to deal with them. J Therm Anal. 1988;34:367–81.CrossRefGoogle Scholar
  61. 61.
    Lázaro M-J, Moliner R, Suelves I. Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis. J Anal Appl Pyrolysis. 1998;47:111–25.CrossRefGoogle Scholar
  62. 62.
    Schmidt SJ, Thomas LC, Lee JW. Response to comment on the melting and decomposition of sugars. J Agric Food Chem. 2012;60:10363–10371. Scholar
  63. 63.
    Reiser P, Birch GG, Mathlouthi M. Physical properties. In: Mathlouthi M, Reiser P, editors. Sucrose prop appl. 1st ed. Suffolk: Blackie Academic & Professional; 1995. p. 186–222.CrossRefGoogle Scholar
  64. 64.
    Galwey AK, Sheen DB, Sherwood JN. Should the melting of ice be represented as a solid state reaction? Thermochim Acta. 2001;375:161–7.CrossRefGoogle Scholar
  65. 65.
    Fagerson IS. Thermal degradation of carbohydrates A review. J Agric Food Chem. 1969;17:747–50.CrossRefGoogle Scholar
  66. 66.
    Eggleston G, Vercellotti JR, Edy LA, Clarke MA. Effects of salts on the initial thermal degradation of concentrated aqueous solutions of sucrose. J Carbohydr Chem. 1996;15:81–94.CrossRefGoogle Scholar
  67. 67.
    Maciejewski M. Computational aspects of kinetic analysis. Part B: the ICTAC kinetics Project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355:145–54.CrossRefGoogle Scholar
  68. 68.
    Vyazovkin SV, Wight CA. Isothermal and nonisothermal reaction kinetics in solids. In search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.CrossRefGoogle Scholar
  69. 69.
    Galwey AK. Thermal reactions of selected solids including reactants that melt during chemical change. J Therm Anal. 1994;41:267–86. Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Food Science and Human NutritionUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.DSC Solutions LLCSmyrnaUSA
  3. 3.School of Chemical SciencesUniversity of Illinois at Urbana ChampaignUrbanaUSA
  4. 4.Department of Food Science and Human NutritionUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations