Advertisement

Synthesis of a novel branched cyclophosphazene-PEPA flame retardant and its application on polypropylene

  • Chong Zhang
  • Xiaodong Guo
  • Shuman Ma
  • Yanyang Zheng
  • Jianzhong Xu
  • Haiyun Ma
Article
  • 7 Downloads

Abstract

A phosphorous–nitrogen containing cyclophosphazene derivative intumescent flame retardant with branched structures, named six(1-oxo-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane-4-methyl) cyclotriphosphazene (PEPAP), was synthesized by introducing caged phosphate to cyclotriphosphazene backbone. Then the PEPAP was applied to polypropylene (PP) by melt blending to improve the flame retardancy and thermal stability. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance (1HNMR) were used to confirm the chemical structure of PEPAP. Thermal stability and flammability properties of PEPAP and PEPAP/PP composites were investigated by thermogravimetric analysis, limited oxygen index (LOI), vertical burning test (UL-94) and cone calorimetry tests. The flame-retardant mechanism was explored by thermogravimetric analysis/infrared spectrometry and thermogravimetry/mass spectrum analysis. The results showed that PEPAP had high thermal stability, and the addition of PEPAP greatly enhanced the carbonization process of PP. Also, the addition of PEPAP can dramatically improve the LOI value and UL 94 rating. For the 25% PEPAP/PP sample, the LOI value was increased to 29.4% and it can pass UL 94 V-0. The intumescent chars with an intact, multicellular structure formed from PEPAP/PP composites contain polyphosphoric acid, indicating a condensed flame-retardant mechanism of PEPAP.

Keywords

Polypropylene Branched phosphazene Flame retardant Composite 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wen P, Wang D, Liu J, Zhan J, Hu Y, Yuen RKK. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene. Polym Adv Technol. 2017;28(6):679–85.CrossRefGoogle Scholar
  2. 2.
    Kong Q, Zhang H, Zheng L, Wang D-Y, Zhang J. Effect on thermal and combustion behaviors of montmorillonite intercalation nickel compounds in polypropylene/IFR system. Polym Adv Technol. 2017;28(8):965–70.CrossRefGoogle Scholar
  3. 3.
    Zheng Z, Liu Y, Zhang L, Wang H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci. 2016;51(12):5857–71.CrossRefGoogle Scholar
  4. 4.
    Li X, Zhao Z, Wang Y, Yan H, Zhang X, Xu B. Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem Eng J. 2017;324:237–50.CrossRefGoogle Scholar
  5. 5.
    Palacios E, Leret P, De La Mata MJ, Fernández JF, De Aza AH, Rodríguez MA, Rubio-Marcos F. Self-forming 3D core–shell ceramic nanostructures for halogen-free flame retardant materials. ACS Appl Mat Interfaces. 2016;8(14):9462–71.CrossRefGoogle Scholar
  6. 6.
    Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2003;112(1):9–17.CrossRefGoogle Scholar
  7. 7.
    Nie S, Liu L, Dai G, Zhou C. Investigation on pyrolysis of intumescent flame-retardant polypropylene (PP) composites based on synchrotron vacuum ultraviolet photoionization combined with molecular-beam mass spectrometry. J Therm Anal Calorim. 2017;130(2):1003–9.CrossRefGoogle Scholar
  8. 8.
    Wang X, Li Y, Liao W, Gu J, Li D. A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol. 2008;19(8):1055–61.CrossRefGoogle Scholar
  9. 9.
    Wen P, Wang X, Xing W, Feng X, Yu B, Shi Y, Tang G, Song L, Hu Y, Yuen RKK. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. Ind Eng Chem Res. 2013;52(48):17015–22.CrossRefGoogle Scholar
  10. 10.
    Yang R, Ma B, Zhao H, Li J. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Ind Eng Chem Res. 2016;55(18):5298–305.CrossRefGoogle Scholar
  11. 11.
    Ma C, Sun L, Jin L, Zhou C, Xiang J, Hu S, Su S. Effect of polypropylene on the pyrolysis of flame retarded high impact polystyrene. Fuel Process Technol. 2015;135:150–6.CrossRefGoogle Scholar
  12. 12.
    Darnerud P. Toxic effects of brominated flame retardants in man and in wildlife. Environ Int. 2003;29(6):841–53.CrossRefGoogle Scholar
  13. 13.
    Yamawaki T. The gasification recycling technology of plastics WEEE containing brominated flame retardants. Fire Mater. 2003;27(6):315–9.CrossRefGoogle Scholar
  14. 14.
    Li B, Xu M. Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab. 2006;91(6):1380–6.CrossRefGoogle Scholar
  15. 15.
    Zheng Z, Liu B, Wang T, Yang S, Cui X, Wang H. Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system. Polym Compos. 2015;36(9):1606–19.CrossRefGoogle Scholar
  16. 16.
    Wang G, Jiang P, Zhu Z. Interface modification and characterization in linear low-density polyethylene highly loaded with aluminum hydroxide. Polym Compos. 2002;23:691–6.CrossRefGoogle Scholar
  17. 17.
    He W, Qi F, Wang N, Chen X, Zhang K, Guo J. The influence of thermal oxidative ageing on flame retardancy, thermal and mechanical properties of LGFPP/IFR composites. J Therm Anal Calorim. 2017;131(2):1017–24.CrossRefGoogle Scholar
  18. 18.
    Khobragade PS, Hansora DP, Naik JB, Chatterjee A. Flame retarding performance of elastomeric nanocomposites: a review. Polym Degrad Stab. 2016;130:194–244.CrossRefGoogle Scholar
  19. 19.
    Gaan S, Sun G, Hutches K, Engelhard MH. Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus–nitrogen synergism. Polym Degrad Stab. 2008;93(1):99–108.CrossRefGoogle Scholar
  20. 20.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289(6):499–511.CrossRefGoogle Scholar
  21. 21.
    Zhuo J, Xie L, Liu G, Chen X, Wang Y. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. J Therm Anal Calorim. 2017;129(1):357–66.CrossRefGoogle Scholar
  22. 22.
    Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. J Therm Anal Calorim. 2012;111(1):725–34.CrossRefGoogle Scholar
  23. 23.
    Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J. 2016;76:196–207.CrossRefGoogle Scholar
  24. 24.
    Qu H, Wu W, Xie J, Xu J. A novel intumescent flame retardant and smoke suppression system for flexible PVC. Polym Adv Technol. 2011;22(7):1174–81.CrossRefGoogle Scholar
  25. 25.
    Chen X, Liu L, Zhuo J, Jiao C. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. J Therm Anal Calorim. 2014;119(1):625–33.CrossRefGoogle Scholar
  26. 26.
    Chen Y, Liu Y, Wang Q, Yin H, Aelmans N, Kierkels R. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio. Polym Degrad Stab. 2003;81(2):215–24.CrossRefGoogle Scholar
  27. 27.
    Wang X, Zhang Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur Polym J. 2004;40(2):385–95.CrossRefGoogle Scholar
  28. 28.
    Verkade JG, Reynolds LT. The synthesis of a novel ester of phosphorus and of arsenic. J Org Chem. 1960;25:663–5.CrossRefGoogle Scholar
  29. 29.
    Halpern Y, Mott DM, Niswander HR. Fire retardancy of thermoplastic materials by intumescence. Ind Eng Chem Prod Res Dev. 1984;23:233–8.CrossRefGoogle Scholar
  30. 30.
    Ma T, Guo C. Synergistic effect between melamine cyanurate and a novel flame retardant curing agent containing a caged bicyclic phosphate on flame retardancy and thermal behavior of epoxy resins. J Anal Appl Pyrolysis. 2017;124:239–46.CrossRefGoogle Scholar
  31. 31.
    Chen J, Liu S, Zhao J. Synthesis, application and flame retardancy mechanism of a novel flame retardant containing silicon and caged bicyclic phosphate for polyamide 6. Polym Degrad Stab. 2011;96(8):1508–15.CrossRefGoogle Scholar
  32. 32.
    Zhang L-L, Liu A-H, Zeng X-R. Flame-retardant epoxy resin from a caged bicyclic phosphate quadridentate silicon complex. J Appl Polym Sci. 2009;111(1):168–74.CrossRefGoogle Scholar
  33. 33.
    Liang B, Cao J, Hong X-D, Wang C-S. Synthesis and properties of a novel phosphorous-containing flame-retardant hardener for epoxy resin. J Appl Polym Sci. 2012;128(5):2759–65.CrossRefGoogle Scholar
  34. 34.
    Song S, Ma J, Cao K, Chang G, Huang Y, Yang J. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polym Degrad Stab. 2014;99:43–52.CrossRefGoogle Scholar
  35. 35.
    Xu L, Lei C, Xu R, Zhang X, Zhang F. Hybridization of α-zirconium phosphate with hexachlorocyclotriphosphazene and its application in the flame retardant poly(vinyl alcohol) composites. Polym Degrad Stab. 2016;133:378–88.CrossRefGoogle Scholar
  36. 36.
    Jimenez M, Duquesne S, Bourbigot S. Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating. Polym Degrad Stab. 2009;94(3):404–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemistry and Environmental SciencesHebei UniversityBaodingChina
  2. 2.Key Laboratory of Analytical Science and Technology of Hebei ProvinceBaodingChina

Personalised recommendations