Dilatometric model for determining the formation of austenite during continuous heating in medium carbon steel

  • Martín Herrejón-Escutia
  • Gildardo Solorio-Díaz
  • Héctor Javier Vergara-Hernández
  • Edgar López-Martínez
  • Octavio Vázquez-GómezEmail author


A model was developed to predict the formation of austenite and dilatometric behavior during continuous heating in AISI 1045 steel, which has an initial microstructure composed of ferrite and pearlite. The model is proposed in two parts based on the heating rate and steel behavior to estimate the volume fraction of austenite during continuous heating. The first part of the transformation model is based on the diffusive model from Johnson–Mehl–Avrami–Kolmogorov at a heating rate interval of 0.083–0.383 °C s−1. The kinetic parameters k and n of the Avrami equation were considered to be dependent on the heating rate. In the second part of the model, the non-isothermal transformation rate model from Johnson–Mehl–Avrami–Kolmogorov was used for a heating rate interval of 0.383–1 °C s−1. The dilatometric behavior before and after austenite formation was associated with the instantaneous coefficient of thermal expansion for each phase or microconstituent present in the steel and during transformation, which was estimated using the volume fraction of austenite and a phase mixing rule. The dilatometric model considers a stage for homogenization of carbon into austenite based on an exponential diffusive model. A dilatometric curve analysis technique was used to determine the kinetic parameters, the instantaneous coefficient of thermal expansion, and the critical temperatures of the AISI 1045 steel. Finally, the model was validated by comparing its predictions with the dilatation deformation obtained in an experiment.


Dilatometric model Continuous heating Austenite formation Instantaneous coefficient of thermal expansion AISI 1045 steel 



M. Herrejón-Escutia would like to thank the National Council of Science and Technology of Mexico (CONACYT) for the scholarship (No. 267206) received for his doctoral studies. The authors are grateful to SEP-CONACYT for the support received through grant CB-256843 and the use of equipment acquired with support for projects Nos. 235780, 271878 and 282357 of the National Laboratory SEDEAM.


  1. 1.
    Krauss G. Steels: processing, structure, and performance, 2nd editon. Materials Park: ASM International; 2015. Scholar
  2. 2.
    Hernández-Morales B, Vázquez-Gómez O, López-Martínez E, et al. Effect of heating rate and silicon content on kinetics of austenite formation during continuous heating. Mater Sci Forum. 2014. Scholar
  3. 3.
    Vázquez-Gómez O, Barrera-Godínez JA, Vergara-Hernández HJ. Kinetic study of austenite formation during continuous heating of unalloyed ductile iron. Int J Min Met Mater. 2015. Scholar
  4. 4.
    López-Martínez E, Vázquez-Gómez O, Vergara-Hernández HJ, et al. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels. Int J Min Met Mater. 2015. Scholar
  5. 5.
    Pawłowski B. Determination of critical points of hypoeutectoid steels/wyznaczanie punktów krytycznych w stalach podeutektoidalnych. Arch Metall Mater. 2012a. Scholar
  6. 6.
    Surm H, Kessler O, Hunkel O, et al. Modelling the ferrite/carbide → austenite transformation of hypoeutectoid and hypereutectoid steels. J Phys IV Fr. 2004. Scholar
  7. 7.
    Dong H, Sun X, Cao W, Liu Z, et al. On the performance improvement of steels through M3 structure control. In: Advanced steels: the recent scenario in steel science and technology; 2011.
  8. 8.
    Oryshchenko AS, Khlusova EI. High-strength steels: control of structure and properties. In: Advanced steels: the recent scenario in steel science and technology; 2011.
  9. 9.
    Hsu TY, Xuejun J. Ultra-high strength steel treated by using quenching-partitioning-tempering process. In: Advanced steels: the recent scenario in steel science and technology; 2011.
  10. 10.
    Gorni AA. Steel forming and heat treating handbook. São Vicente SP.\_SFHTHandbook.pdf (2018). Accessed 30 Apr 2018.
  11. 11.
    Hougardy HP. Werkstoffkunde stahl band 1: grundlagen. Berlin: Springer; 1984. Scholar
  12. 12.
    Kasatkin OG, Vinokur BB, Pilyushenko VL. Calculation models for determining the critical points of steel. Met Sci Heat Treat. 1984. Scholar
  13. 13.
    Dobrzański LA, Trzaska J. Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations. J Mater Process Technol. 2004. Scholar
  14. 14.
    Trzaska J, Dobrzański LA. Modelling of CCT diagrams for engineering and constructional steels. J Mater Process Technol. 2007. Scholar
  15. 15.
    Arjomandi M, Sadati SH, Khorsand H, et al. Austenite formation temperature prediction in steels using an artificial neural network. Defect Diffus Forum. 2008. Scholar
  16. 16.
    Pawłowski B. Critical points of hypoeutectoid steel-prediction of the pearlite dissolution finish temperature Ac1f. J Achiev Mater Manuf Eng. 2011;49:331–7.Google Scholar
  17. 17.
    Trzaska J. Calculation of critical temperatures by empirical formulae. Arch Metall Mater. 2016. Scholar
  18. 18.
    Hunkel M, Surm H, Steinbacher M. Dilatometry. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Amsterdam: Elsevier; 2018. p. 103–29. Scholar
  19. 19.
    Vázquez-Gómez O, Gallegos-Pérez AI, López-Martínez E, et al. Criteria for the dilatometric analysis to determine the transformation kinetics during continuous heating. J Therm Anal Calorim. 2018. Scholar
  20. 20.
    Rivolta R, Gerosa R, Tavasci F. The dilatometric technique for studying sigma phase precipitation kinetics in F55 steel grade. J Therm Anal Calorim. 2017. Scholar
  21. 21.
    Kawuloková M, Smetana B, Zlá S, et al. Study of equilibrium and nonequilibrium phase transformations temperatures of steel by thermal analysis methods. J Therm Anal Calorim. 2017. Scholar
  22. 22.
    Grajcar A, Zalecki W, Skrzypczyk P, et al. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim. 2014. Scholar
  23. 23.
    Lee SJ, Lusk MT, Lee YK. Conversional model of transformation strain to phase fraction in low alloy steels. Acta Mater. 2007. Scholar
  24. 24.
    Lee SJ, Clarke KD, Van Tyne CJ. An on-heating dilation conversional model for austenite formation in hypoeutectoid steels. Metall Mater Trans A. 2010. Scholar
  25. 25.
    Lee SJ, Clarke KD. A conversional model for austenite formation in hypereutectoid steels. Metall Mater Trans A. 2010. Scholar
  26. 26.
    Caballero FG, Capdevila C, García de Andrés C. Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int. 2001. Scholar
  27. 27.
    García de Andrés C, Caballero FG, Capdevila C, et al. Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Mater Charact. 2001. Scholar
  28. 28.
    Oliveira FLG, Andrade MS, Cota AB. Kinetics of austenite formation during continuous heating in a low carbon steel. Mater Charact. 2007. Scholar
  29. 29.
    Tszeng TC, Shi G. A global optimization technique to identify overall transformation kinetics using dilatometry data-applications to austenitization of steels. Mater Sci Eng A. 2004. Scholar
  30. 30.
    Caballero FG, Capdevila C, García de Andrés C. Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure. J Mater Sci. 2002. Scholar
  31. 31.
    Surm H, Kessler O, Hoffmann F, et al. Modelling of austenitising with non-constant heating rate in hypereutectoid steels. Int J Microstruct Mater Prop. 2008. Scholar
  32. 32.
    Li H, Gai K, He L, et al. Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson–Mehl–Avrami equation. Mater Des. 2016a. Scholar
  33. 33.
    Li N, Lin J, Balint DS, et al. Modelling of austenite formation during heating in boron steel hot stamping processes. J Mater Process Technol. 2016b. Scholar
  34. 34.
    Pawłowski B. Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels. J Achiev Mater Manuf Eng. 2012;54:185–93.Google Scholar
  35. 35.
    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939. Scholar
  36. 36.
    Avrami M. Kinetics of phase change, II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940. Scholar
  37. 37.
    Avrami M. Granulation, phase change, and microstructure kinetics of phase change, III. J Chem Phys. 1941. Scholar
  38. 38.
    Vázquez-Gómez O, López-Martínez E, Gallegos-Pérez AI, et al. Kinetic study of the austenite decomposition during continuous cooling in a welding steel. Proc Third Pan Am Mater Congress. 2017. Scholar
  39. 39.
    Cahn JW. Transformation kinetics during continuous cooling. Acta Metall. 1956. Scholar
  40. 40.
    Ruitenberg G, Woldt E, Petford-Long AK. Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta. 2001. Scholar
  41. 41.
    Farjas J, Roura P. Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 2006. Scholar
  42. 42.
    James JD, Spittle JA, Brown SGR, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol. 2001;12:R1–15.CrossRefGoogle Scholar
  43. 43.
    Hawbolt EB, Chau B, Brimacombe JK. Kinetics of austenite-pearlite transformation in eutectoid carbon steel. Metall Trans A. 1983. Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería MecánicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Tecnológico Nacional de México / I.T. MoreliaMoreliaMexico
  3. 3.Universidad del IstmoSan Domingo TehuantepecMexico
  4. 4.Consejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMexico

Personalised recommendations