Advertisement

Evolution of absorption energy per unit thickness of damaged sandstone

  • P. K. Gautam
  • M. K. Jha
  • A. K. Verma
  • T. N. Singh
Article
  • 26 Downloads

Abstract

This paper experimentally studies the evolution of absorption energy characteristics per unit thickness of Jhiri sandstone at variable temperatures (from 25 to 900 °C), each specimen being heated at the heating rate of 5 °C min−1. Each specimen was kept at its designated temperature which, once reached, is kept constant for 12 h and cools down at 0.364 °C min−1 rate till achieving at room temperature. Laboratory tests including DTA/TGA, thin section, SEM/EDAX, P-wave velocity and Brazilian tensile strength were conducted in this study. Geochemical and thermal analyses were performed to investigate the changes in the physical and chemical properties of the sandstone after high thermal treatment. However, when the temperature exceeds up to 300 °C, it is found that intragranular cracking is highly temperature dependent. Damage thresholds temperature has been found to be 300 °C. The absorption energy caused by high temperature can be better understood by the mass loss rate than P-wave velocity loss rate and tensile strength loss rate. The result obtained in this paper will be useful for predicting the evolution of absorption energy characteristics of sandstone when exposed to the high-temperature environment.

Keywords

Absorption energy Tensile strength Damage Intergranular cracking Temperature 

Notes

Acknowledgements

The authors greatly appreciate and acknowledge the scholarship provided by the National Postdoctoral Fellow (N-PDF), Science and Engineering Research Board (SERB), FILE NO. PDF/2017/002674, (a statutory body of the Department of Science and Technology, Government of India).

References

  1. 1.
    Rao QH, Wang Z, Xie HF, Xie Q. Experimental study of mechanical properties of sandstone at high temperature. J Cent South Univ Technol China. 2007;14(1):478–83.CrossRefGoogle Scholar
  2. 2.
    Wan ZJ, Zhao YS, Zhang Y, Wang C. Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure. Proced Earth Planet Sci. 2009;1(1):565–70.CrossRefGoogle Scholar
  3. 3.
    Zhang L, Mao X, Lu A. Experimental study on the mechanical properties of rocks at high temperature. Sci China Ser E Technol Sci. 2009;52(3):641–6.CrossRefGoogle Scholar
  4. 4.
    Miao SQ, Li HP, Chen G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim. 2014;115(2):1057–63.CrossRefGoogle Scholar
  5. 5.
    Labus M, Labus K. Thermal conductivity and diffusivity of fine-grained sedimentary rocks. J Therm Anal Calorim. 2018;132:1–8.CrossRefGoogle Scholar
  6. 6.
    Plevová E, Vaculíková L, Kozusnikova A, Ritz M, Martynkova GS. Thermal expansion behaviour of granites. J Therm Anal Calorim. 2016;123(2):1555–61.CrossRefGoogle Scholar
  7. 7.
    Chen YL, Ni J, Shao W, Rafig A. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading. Int J Rock Mech Min Sci. 2012;56:62–6.CrossRefGoogle Scholar
  8. 8.
    Ranjith PG, Daniel RV, Chen BJ, Samintha MAP. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng Geol. 2012;151:120–7.CrossRefGoogle Scholar
  9. 9.
    Brotons V, Tomás R, Ivorra S, Alarcón JC. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol. 2013;167:117–27.CrossRefGoogle Scholar
  10. 10.
    Wu G, Wang Y, Swift G, Chen J. Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geo Geol Eng. 2013;31(2):809–16.CrossRefGoogle Scholar
  11. 11.
    Liu R, Mao X, Zhang L, Dan M. Thermal properties of mudstone at high temperature Int. J Geomech. 2013;14(5):04014023.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Qiang S, Huan H, Cao L, Zhang W, Wang B. Pore characteristics and mechanical properties of sandstone under the influence of temperature. Appl Therm Eng. 2017;113:537–43.CrossRefGoogle Scholar
  13. 13.
    Gautam PK, Verma AK, Maheshwar S, Singh TN. Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech Rock Eng. 2016;49(5):1985–93.CrossRefGoogle Scholar
  14. 14.
    Gautam PK, Verma AK, Jha MK, Sarkar K, Singh TN, Bajpai RK. Study of strain rate and thermal damage of Dholpur sandstone at elevated temperature. Rock Mech Rock Eng. 2016;49(9):3805–15.CrossRefGoogle Scholar
  15. 15.
    Gautam PK, Verma AK, Sharma P, Singh TN. Evolution of thermal damage threshold of Jalore granite. Rock Mech Rock Eng. 2018;51:2949.CrossRefGoogle Scholar
  16. 16.
    Mahanta B, Singh TN, Ranjith PG. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol. 2016;210:103–14.CrossRefGoogle Scholar
  17. 17.
    Lu M. Rock engineering problems related to underground hydrocarbon storage. J Rock Mech Geotech Eng. 2010;2(4):289–97.Google Scholar
  18. 18.
    Roy DG, Singh TN. Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng. 2016;49(5):1663–77.CrossRefGoogle Scholar
  19. 19.
    Sirdesai NN, Mahanta B, Singh TN, Ranjith PG. Elastic modulus of thermally treated fine grained sandstone using non-contact laser extensometer. In International conference on recent advances in rock engineering. 2016:105–109.Google Scholar
  20. 20.
    Zhang W, Sun Q, Hao S, Geng J, Chao L. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng. 2016;98:1297–304.CrossRefGoogle Scholar
  21. 21.
    Dan DQ, Konietzky H. Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks. Int J Rock Mech Min Sci. 2014;71(4):53–63.CrossRefGoogle Scholar
  22. 22.
    Liu S, Xu J. Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci. 2014;71:188–93.CrossRefGoogle Scholar
  23. 23.
    Chao L, Sun Q, Zhang W, Geng J, Qi Y, Lu L. The effect of high temperature on tensile strength of sandstone. Appl Therm Eng. 2017;111:573–9.CrossRefGoogle Scholar
  24. 24.
    Zhang L, Mao X, Liu R, Guo X, Ma D. The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng. 2014;47(4):1479–84.CrossRefGoogle Scholar
  25. 25.
    Jha MK, Verma AK, Maheshwar S, Chauhan A. Study of temperature effect on thermal conductivity of Jhiri shale from upper Vindhyan, India. Bull Eng Geol Environ. 2016;75(4):1657–68.CrossRefGoogle Scholar
  26. 26.
    Verma AK, Jha MK, Maheshwar S, Singh TN, Bajpai RK. Temperature-dependent thermophysical properties of Ganurgarh shales from Bhander group, India. Environ Earth Sci. 2016;75(4):300.CrossRefGoogle Scholar
  27. 27.
    Jha MK, Verma AK, Gautam PK, Negi A. Study of mechanical properties of Vindhayan shaly rocks at elevated temperature. J Geol Soc India. 2017;90(3):267–72.CrossRefGoogle Scholar
  28. 28.
    ISRM Suggested methods Rock characterization testing and monitoring. 1981.Google Scholar
  29. 29.
    Yang L, Marshall AL, Wanatowski W, Stace R, Ekneligoda T. Effect of high temperatures on sandstone: a computed tomography scan study. Int J Phys Model Geotech. 2017;17:75–90.CrossRefGoogle Scholar
  30. 30.
    Su H, Hongwen J, Zhao H. Study on tensile strength and size effect of red sandstone after high temperature treatment. Chin J Rock Mech Eng. 2015;341:2879–87.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • P. K. Gautam
    • 1
  • M. K. Jha
    • 2
  • A. K. Verma
    • 3
  • T. N. Singh
    • 1
  1. 1.Department of Earth SciencesIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Mechanical EngineeringUCET-VBUHazaribagIndia
  3. 3.Department of Mining EngineeringIndian Institute of Technology, BHUVaranasiIndia

Personalised recommendations