Advertisement

Lattice Boltzmann study of multi-walled carbon nanotube (MWCNT)-Fe3O4/water hybrid nanofluids natural convection heat transfer in a Π-shaped cavity equipped by hot obstacle

  • Amin Matori
  • Rasul Mohebbi
  • Zahra Hashemi
  • Yuan Ma
Article
  • 26 Downloads

Abstract

In the present paper, the effect of nanofluid and the hot obstacle in a Π-shaped cavity is investigated. Lattice Boltzmann method is used to simulate the fluid flow and heat transfer. The effects of the parameters such as the nanoparticle solid volume fraction, the Rayleigh number, aspect ratio of cavity and hot obstacle position on the flow pattern and heat transfer parameters are studied. The numerical results are compared with previous results for validation, and a good agreement obtained. It is found that the average Nusselt number is increased by increasing the nanoparticle solid volume fraction, the Rayleigh number and the aspect ratio of cavity. Moreover, the effect of Rayleigh number on the average Nusselt number at high Rayleigh numbers (105–106) is more pronounced than that at low Rayleigh numbers (103–104) due to the different heat transfer mechanisms. The position of the hot obstacle affects the heat transfer significantly. When the hot obstacle is located on the center, the heat transfer is more effective.

Keywords

Π-Shaped cavity Natural convection heat transfer LBM Hot obstacle MWCNT-Fe3O4/water hybrid nanofluids 

List of symbols

a

Height of obstacle

AR

Cavity obstruction ratio

b

Length height of obstacle

cs

Speed of sound in lattice scale

ei

Discrete lattice velocity in direction

F

Force term

f

Density distribution function

feq

Equilibrium density distribution function

g

Gravity

geq

Equilibrium energy distribution function

H

Height of the cavity

k

Thermal conductivity

L

Width of the cavity

M

The number of lattices in the y-direction

Ma

Mach number

Nu

Nusselt number

P

Non-dimensional pressure

Pr

Prandtl number

Ra

Rayleigh number

Sx

Positions of the heater from upper side of cavity

T

Temperature

U

Non-dimensional velocity

V

Components

W

Length of the cavity

Greek symbols

θ

Non-dimensional temperature

ωi

Weight function in direction i

ϕ

Volume fraction

τν

Relaxation time for flow

τg

Relaxation time for flow

α

Thermal diffusivity

ν

Viscosity

β

Thermal expansion coefficient

μ

Dynamic viscosity

Subscripts

c

Cold

f

Fluid

h

Hot

i

Move direction of single-particle

nf

Nanofluid

p

Solid particles

References

  1. 1.
    Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–72.CrossRefGoogle Scholar
  2. 2.
    Boulahia Z, Wakif A, Sehaqui R. Numerical modeling of natural convection heat transfer in a wavy wall enclosure filled by a Cu-water nanofluid with a square cooler. J Nanofluids. 2017;6(2):324–33.CrossRefGoogle Scholar
  3. 3.
    Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(09):1350060.CrossRefGoogle Scholar
  4. 4.
    Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built in square cylinder. J Appl Mech Tech Phys. 2016;57(1):55–68.CrossRefGoogle Scholar
  5. 5.
    Mohebbi R, Heidari H. Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Int J Mod Phys C. 2017;28(03):1750042.CrossRefGoogle Scholar
  6. 6.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.CrossRefGoogle Scholar
  7. 7.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9.CrossRefGoogle Scholar
  8. 8.
    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7500-8.CrossRefGoogle Scholar
  9. 9.
    Maskaniyan M, Nazari M, Rashidi S, Mahian O. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Therm Sci Eng Prog. 2018;6:186–93.CrossRefGoogle Scholar
  10. 10.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132(2):1189–200.CrossRefGoogle Scholar
  11. 11.
    Bovand M, Rashidi S, Ahmadi G, Esfahani JA. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow-A two-way coupling of Eulerian–Lagrangian model. Appl Therm Eng. 2016;108:368–77.CrossRefGoogle Scholar
  12. 12.
    Rashidi S, Bovand M, Esfahani JA, Ahmadi G. Discrete particle model for convective Al2O3–water nanofluid around a triangular obstacle. Appl Therm Eng. 2016;100:39–54.CrossRefGoogle Scholar
  13. 13.
    Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.CrossRefGoogle Scholar
  14. 14.
    Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27(2):312–22.CrossRefGoogle Scholar
  15. 15.
    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018;12:1–3.Google Scholar
  16. 16.
    Mohebbi R, Lakzayi H, Sidik NA, Japar WM. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.CrossRefGoogle Scholar
  17. 17.
    Mohebbi R, Rashidi MM, Izadi M, Sidik NA, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.CrossRefGoogle Scholar
  18. 18.
    Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.CrossRefGoogle Scholar
  19. 19.
    Wakif A, Boulahia Z, Sehaqui R. Numerical study of the onset of convection in a newtonian nanofluid layer with spatially uniform and non uniform internal heating. J Nanofluids. 2017;6(1):136–48.CrossRefGoogle Scholar
  20. 20.
    Wakif A, Boulahia Z, Sehaqui R. Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 2017;7:2134–52.CrossRefGoogle Scholar
  21. 21.
    Wakif A, Boulahia Z, Sehaqui R. A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. 2018;9:1438–54.CrossRefGoogle Scholar
  22. 22.
    Boulahia Z, Wakif A, Sehaqui R. Finite volume analysis of free convection heat transfer in a square enclosure filled by a Cu–water nanofluid containing different shapes of heating cylinder. J Nanofluids. 2017;6(4):761–8.CrossRefGoogle Scholar
  23. 23.
    Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7044-y.CrossRefGoogle Scholar
  24. 24.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2018.  https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.CrossRefGoogle Scholar
  25. 25.
    Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.CrossRefGoogle Scholar
  26. 26.
    Yucel N, Ozdem AH. Natural convection in partially divided square enclosures. Heat Mass Transf. 2003;40(1–2):167–75.CrossRefGoogle Scholar
  27. 27.
    Yoshino M, Mizutani Y. Lattice Boltzmann simulation of liquid–gas flows through solid bodies in a square duct. Math Comput Simul. 2006;72(2–6):264–9.CrossRefGoogle Scholar
  28. 28.
    Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B/Fluids. 2010;29(6):472–82.CrossRefGoogle Scholar
  29. 29.
    Mahmoodi M. Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci. 2011;50(9):1731–40.CrossRefGoogle Scholar
  30. 30.
    Kefayati GR, Hosseinizadeh SF, Gorji M, Sajjadi H. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int Commun Heat Mass Transf. 2011;38(6):798–805.CrossRefGoogle Scholar
  31. 31.
    Mehrizi AA, Farhadi M, Afroozi HH, Sedighi K, Darz AR. Mixed convection heat transfer in a ventilated cavity with hot obstacle: effect of nanofluid and outlet port location. Int Commun Heat Mass Transf. 2012;39(7):1000–8.CrossRefGoogle Scholar
  32. 32.
    Esfe MH, Akbari M, Karimipour A, Afrand M, Mahian O, Wongwises S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int J Heat Mass Transf. 2015;85:656–66.CrossRefGoogle Scholar
  33. 33.
    Mamourian M, Shirvan KM, Ellahi R, Rahimi AB. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int J Heat Mass Transf. 2016;102:544–54.CrossRefGoogle Scholar
  34. 34.
    Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.CrossRefGoogle Scholar
  35. 35.
    Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.CrossRefGoogle Scholar
  36. 36.
    Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a contrariwise T-shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process. 2018;125:56–66.CrossRefGoogle Scholar
  37. 37.
    Izadi M, Mohebbi R, Chamkha A, Pop I. Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped enclosure using Lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018;28:1930–55.CrossRefGoogle Scholar
  38. 38.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Effect of hot obstacle position on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure using Lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018.Google Scholar
  39. 39.
    Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7518-y.CrossRefGoogle Scholar
  40. 40.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018.  https://doi.org/10.1016/j.jtice.2018.07.026.CrossRefGoogle Scholar
  41. 41.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.CrossRefGoogle Scholar
  42. 42.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Mod Phys C. 2018;29(04):1850030.CrossRefGoogle Scholar
  43. 43.
    Mohebbi R, Izadi M, Amiri Delouei A, Sajjadi H. Effect of MWCNT-Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7483-5.CrossRefGoogle Scholar
  44. 44.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD forced convection of MWCNT-Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7788-4.CrossRefGoogle Scholar
  45. 45.
    Abchouyeh MA, Mohebbi R, Fard OS. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018.  https://doi.org/10.1142/S0129183118500791.CrossRefGoogle Scholar
  46. 46.
    Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: lattice Boltzmann simulation. J Nonnewton Fluid Mech. 2014;204:38–49.CrossRefGoogle Scholar
  47. 47.
    Ranjbar P, Mohebbi R, Heidari H. Numerical investigation of nanofluids heat transfer in a channel consists of rectangular cavities by lattice Boltzmann method. Int J Mod Phys C. 2018.  https://doi.org/10.1142/S0129183118501085.CrossRefGoogle Scholar
  48. 48.
    Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.CrossRefGoogle Scholar
  49. 49.
    Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids. 1995;7(12):2928–30.CrossRefGoogle Scholar
  50. 50.
    Mohamad AA. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can J Chem Eng. 2007;85(6):946.Google Scholar
  51. 51.
    Mahmoodi M, Hashemi SM. Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int J Therm Sci. 2012;55:76–89.CrossRefGoogle Scholar
  52. 52.
    Kalidasan K, Kanna PR. Effective utilization of MWCNT–water nanofluid for the enhancement of laminar natural convection inside the open square enclosure. J Taiwan Inst Chem Eng. 2016;65:331–40.CrossRefGoogle Scholar
  53. 53.
    Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Amin Matori
    • 1
  • Rasul Mohebbi
    • 2
  • Zahra Hashemi
    • 1
  • Yuan Ma
    • 3
    • 4
  1. 1.Department of Mechanical Engineering, Bushehr BranchIslamic Azad UniversityBushehrIran
  2. 2.School of EngineeringDamghan UniversityDamghanIran
  3. 3.Shanghai Automotive Wind Tunnel CenterTongji UniversityShanghaiChina
  4. 4.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management SystemsShanghaiChina

Personalised recommendations