Advertisement

Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM)

  • Heydar Maddah
  • Reza Aghayari
  • Mohammad Hossein Ahmadi
  • Mohammad Rahimzadeh
  • Nahid Ghasemi
Article
  • 9 Downloads

Abstract

The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers) SAE 85 W 90(50/50) at different temperatures and the different volumetric fraction by applying artificial neural networks based on experimental data. Several samples of nanofluid were provided by adding nanoparticles in 0%, 0.1%, 0.3%, 0.5%, 0.8% and 1% volumetric concentrations. Dynamic viscosity of the nanofluid was measured in the temperature range of 25–50 °C. Initially, a self-organizing 6 × 6 hexagonal network was used. A total of 36 neurons were chosen. The winner neuron was neuron 25, having assigned the most data to itself. Then 25 neurons were used for the neural network, which had a very good performance. Temperature and concentration were considered as input variables, while the relative viscosity was the output parameter of the neural network. Mean-square error, correlation coefficient and standard deviation were utilized in order to assess the results. Based on the obtained results, the best model was double-layer perceptron neural network with 25 neurons. The mean square error, correlation coefficient and standard deviation were equal to 2.0193e−008, 1 and 0.00021082, respectively. Therefore, the model is able to predict relative viscosity with appropriate accuracy.

Keywords

Nanofluid Viscosity Artificial neural networks Self-organizing map 

References

  1. 1.
    Rahman MRA, Leong KY, Idris AC, Saad MR, Anwar M. Numerical analysis of the forced convective heat transfer on Al2O3–Cu/water hybrid nanofluid. Heat Mass Transf Und Stoffuebertragung. 2017;53:1835–42.  https://doi.org/10.1007/s00231-016-1941-z.CrossRefGoogle Scholar
  2. 2.
    Negm MNA, Abdel-Rehim AA, Attia AAA. Investigating the effect of Al2O3/water nanofluid on the efficiency of a thermosyphon flat-plate solar collector. Heat Transf Therm Eng ASME. 2016;8:V008T10A097.  https://doi.org/10.1115/imece2016-66039.CrossRefGoogle Scholar
  3. 3.
    Akbarianrad N, Mohammadian F, Alhuyi Nazari M, Rahbani Nobar B. Applications of nanotechnology in endodontic: a review. Nanomed J. 2018;5:121–6.  https://doi.org/10.22038/NMJ.2018.005.0001.CrossRefGoogle Scholar
  4. 4.
    Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8.  https://doi.org/10.1016/j.rser.2018.04.042.CrossRefGoogle Scholar
  5. 5.
    Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018.  https://doi.org/10.1016/j.molliq.2018.05.124.CrossRefGoogle Scholar
  6. 6.
    Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7035-z.CrossRefGoogle Scholar
  7. 7.
    Aghayari R, Madah H, Keyvani B, Moghadassi A, Ashori F. The effect of nanoparticles on thermal efficiency of double tube heat exchangers in turbulent flow 2014; 2014.Google Scholar
  8. 8.
    Ghasemi N, Aghayari R, Maddah H. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and aluminum oxide nanofluid using central composite design method. Heat Mass Transf. 2018.  https://doi.org/10.1007/s00231-018-2292-8.CrossRefGoogle Scholar
  9. 9.
    Maddah H, Ghasemi N. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Transf. 2017;53:3459–72.  https://doi.org/10.1007/s00231-017-2068-6.CrossRefGoogle Scholar
  10. 10.
    Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018;541:154–64.  https://doi.org/10.1016/J.COLSURFA.2018.01.030.CrossRefGoogle Scholar
  11. 11.
    Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Therm Fluid Sci. 2016;74:11–8.  https://doi.org/10.1016/J.EXPTHERMFLUSCI.2015.11.018.CrossRefGoogle Scholar
  12. 12.
    Taslimifar M, Mohammadi M, Afshin H, Saidi MH, Shafii MB. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41.  https://doi.org/10.1016/j.ijthermalsci.2012.10.016.CrossRefGoogle Scholar
  13. 13.
    Mohammadi M, Mohammadi M, Ghahremani AR, Shafii MB, Mohammadi N. Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe. Heat Transf Eng. 2014;35:25–33.  https://doi.org/10.1080/01457632.2013.810086.CrossRefGoogle Scholar
  14. 14.
    Amin TE, Roghayeh G, Fatemeh R, Fatollah P. Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency. Energy Explor Exploit. 2015;33:659–76.  https://doi.org/10.1260/0144-5987.33.5.659.CrossRefGoogle Scholar
  15. 15.
    Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4.  https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.CrossRefGoogle Scholar
  16. 16.
    Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65.  https://doi.org/10.1016/j.applthermaleng.2017.01.068.CrossRefGoogle Scholar
  17. 17.
    Hong T-K, Yang H-S, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys. 2005;97:064311.  https://doi.org/10.1063/1.1861145.CrossRefGoogle Scholar
  18. 18.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.  https://doi.org/10.1007/s10973-014-3771-x.CrossRefGoogle Scholar
  19. 19.
    Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A Physicochem Eng Asp. 2010;355:109–13.  https://doi.org/10.1016/j.colsurfa.2009.11.044.CrossRefGoogle Scholar
  20. 20.
    Pal B, Mallick SS, Pal B. Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior than typical bulk powder. Colloids Surf A Physicochem Eng Asp. 2014;459:282–9.  https://doi.org/10.1016/j.colsurfa.2014.07.017.CrossRefGoogle Scholar
  21. 21.
    Lenin R, Joy PA. Role of base fluid on the thermal conductivity of oleic acid coated magnetite nanofluids. Colloids Surf A Physicochem Eng Asp. 2017;529:922–9.  https://doi.org/10.1016/J.COLSURFA.2017.06.084.CrossRefGoogle Scholar
  22. 22.
    Jamshidi N, Farhadi M, Ganji DD, Sedighi K. Experimental investigation on the viscosity of nanofluids. Int J Eng Trans B Appl. 2012;25:201–9.Google Scholar
  23. 23.
    Hemmat Esfe M, Wongwises S, Rejvani M. Prediction of thermal conductivity of carbon nanotube-EG nanofluid using experimental data by ANN. Curr Nanosci. 2017;13:324–9.CrossRefGoogle Scholar
  24. 24.
    Esfe MH, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71.  https://doi.org/10.1007/s10973-016-6002-9.CrossRefGoogle Scholar
  25. 25.
    Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.  https://doi.org/10.1007/s10973-016-5469-8.CrossRefGoogle Scholar
  26. 26.
    Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6680-y.CrossRefGoogle Scholar
  27. 27.
    Hemmat Esfe M, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85.  https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.077.CrossRefGoogle Scholar
  28. 28.
    Sheremet M, Shenoy A, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. Boca Raton: CRC Press; 2016.Google Scholar
  29. 29.
    Sheremet M, Pop I. Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. Transp Porous Media. 2014;105:411–29.  https://doi.org/10.1007/s11242-014-0375-7.CrossRefGoogle Scholar
  30. 30.
    Sheremet M, Mahian O, Pop I. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.070.CrossRefGoogle Scholar
  31. 31.
    Maddah H, Ghasemi N, Keyvani B, Cheraghali R. Experimental and numerical study of nanofluid in heat exchanger fitted by modified twisted tape: exergy analysis and ANN prediction model. Heat Mass Transf Und Stoffuebertragung. 2017;53:1413–23.  https://doi.org/10.1007/s00231-016-1906-2.CrossRefGoogle Scholar
  32. 32.
    Kohonen T. Essentials of the self-organizing map. Neural Netw. 2013;37:52–65.  https://doi.org/10.1016/j.neunet.2012.09.018.CrossRefPubMedGoogle Scholar
  33. 33.
    Ghasemi N, Aghayari R, Maddah H. Designing an artificial neural network using radial basis function to model exergetic efficiency of nanofluids in mini double pipe heat exchanger. Heat Mass Transf. 2017.  https://doi.org/10.1007/s00231-017-2261-7.CrossRefGoogle Scholar
  34. 34.
    Alias H, Johari A, Ngadi N, Zaine MZ. Thermal and flow behaviour of Titania-deionized water nanofluids. Adv Environ Biol. 2015;9:43–8.Google Scholar
  35. 35.
    Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2:164–8.CrossRefGoogle Scholar
  36. 36.
    Mukherjee A. Self-organizing neural network for identification of natural modes. J Comput Civil Eng. 1997;11:74–7.  https://doi.org/10.1061/(ASCE)0887-3801(1997)11:1(74).CrossRefGoogle Scholar
  37. 37.
    Chaudhary V, Bhatia RS, Ahlawat AK. A novel self-organizing map (SOM) learning algorithm with nearest and farthest neurons. Alex Eng J. 2014;53:827–31.  https://doi.org/10.1016/j.aej.2014.09.007.CrossRefGoogle Scholar
  38. 38.
    Rudyak VY, Dimov SV, Kuznetsov VV. On the dependence of the viscosity coefficient of nanofluids on particle size and temperature. Tech Phys Lett. 2013;39:779–82.  https://doi.org/10.1134/S1063785013090125.CrossRefGoogle Scholar
  39. 39.
    Hemmat Esfe M, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.  https://doi.org/10.1016/j.icheatmasstransfer.2015.06.013.CrossRefGoogle Scholar
  40. 40.
    Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO—engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81.  https://doi.org/10.1016/J.MOLLIQ.2017.05.121.CrossRefGoogle Scholar
  41. 41.
    Moghaddam MA, Motahari K. Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Appl Therm Eng. 2017;123:1419–33.  https://doi.org/10.1016/J.APPLTHERMALENG.2017.05.200.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Heydar Maddah
    • 1
  • Reza Aghayari
    • 1
  • Mohammad Hossein Ahmadi
    • 2
  • Mohammad Rahimzadeh
    • 3
  • Nahid Ghasemi
    • 4
  1. 1.Department of ChemistryPayame Noor University (PNU)TehranIran
  2. 2.Faculty of Mechanical EngineeringShahrood University of TechnologyShahroodIran
  3. 3.Department of Mechanical EngineeringGolestan UniversityGorganIran
  4. 4.Department of Chemistry, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations