Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1807–1816 | Cite as

Investigation on the combustion efficiency and residual of nitrocellulose–alcohol humectant mixtures

  • Jiahao LiuEmail author
  • Yu He
  • Jinhui Wang
  • Jian WangEmail author
  • Changfa Tao
  • Richard Yuen
  • Haihang Li
Article
  • 73 Downloads

Abstract

To have an insight into the fire properties of nitrocellulose–isopropanol and –ethanol mixtures, the experimental data in previous work are further extracted and analyzed carefully. Generally, the effective heats of combustion of the two samples characterized by both the peak and mean heat release rates decrease with the increasing external irradiance levels. The combustion efficiencies characterized by the ratio of carbon dioxide (CO2) to carbon monoxide (CO), regardless of the maximum and mean values, also show the similar decreasing tendency, exhibiting a lower combustion efficiency at elevated external radiation. With respect to the X-ray photoelectron spectroscopy results, the two nitrocellulose–alcohol mixtures appear to yield the similar species of combustion residuals, but slightly different in the atomic concentrations, which may be due to the differences in the alcohol humectant and nitrogen content in nitrocellulose substrate. These findings are expected to provide further understanding of fire properties of nitrocellulose–alcohol mixtures and help with fire investigation of such type of fires.

Keywords

Nitrocellulose Alcohol humectant Combustion efficiency Combustion residual 

Notes

Acknowledgements

This research was financially supported by Shanghai Sailing Program (Grant No. 18YF1409600), Natural Science Foundation of Shanghai (Grant No. 16ZR1414600), the National Natural Science Foundation of China (Nos. 51376172, 50909058 and 51408181), the Research Grant Council of the Hong Kong Special Administrative Region, China (No. CityU 11301015) and the Open Foundation of State Key Laboratory of Fire Science (No. HZ2016-KF13).

References

  1. 1.
    Akhavan J. The chemistry of explosives, chapter 2. London: Royal Society of Chemistry; 2004. p. 21–48.CrossRefGoogle Scholar
  2. 2.
    Tian Y, Guo K, Bian X, Wang T, Chen S, Sun J. Durable and room-temperature curable superhydrophobic composite coating on nitrocellulose lacquer. Surf Coat Technol. 2017;328:444–50.CrossRefGoogle Scholar
  3. 3.
    Zhang X, Hikal WM, Zhang Y, Bhattacharia SK, Li L, Panditrao S, Wang S, Weeks BL. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett. 2013;102(14):141905.CrossRefGoogle Scholar
  4. 4.
    Zhang X, Weeks BL. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater. 2014;268:224–8.CrossRefGoogle Scholar
  5. 5.
    Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2–3):1141–4.CrossRefGoogle Scholar
  6. 6.
    Luo Q, Ren T, Shen H, Zhang J, Liang D. The thermal properties of nitrocellulose: from thermal decomposition to thermal explosion. Combust Sci Technol. 2018;190(4):579–90.CrossRefGoogle Scholar
  7. 7.
    Sun Y, Ren H, Jiao Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim. 2018;131(1):101–11.CrossRefGoogle Scholar
  8. 8.
    Mirzajani V, Farhadi K, Pourmortazavi SM. Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim. 2018;131(2):937–48.CrossRefGoogle Scholar
  9. 9.
    Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, Wang J. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7410-9.Google Scholar
  10. 10.
    Katoh K, Higashi E, Nakano K, Ito S, Wada Y, Kasamatsu J, Miya H, Yamamoto M, Wada Y. Thermal behavior of nitrocellulose with inorganic salts and their mechanistic action. Propellants Explos Pyrotech. 2010;35(5):461–7.CrossRefGoogle Scholar
  11. 11.
    Mahajan R, Makashir P, Agrawal J. Combustion behaviour of nitrocellulose and its complexes with copper oxide. Hot stage microscopic studie. J Therm Anal Calorim. 2001;65(3):935–42.CrossRefGoogle Scholar
  12. 12.
    Makashir PS, Mahajan RR, Agrawal JP. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45(3):501–9.CrossRefGoogle Scholar
  13. 13.
    Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7235-6.Google Scholar
  14. 14.
    He Y , He Y, Liu J, Li P, Chen M, Wei R, Wang J. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12.CrossRefGoogle Scholar
  15. 15.
    Wei R, He Y, Liu J, He Y, Mi W, Yuen R, Wang J. Experimental study on the fire properties of nitrocellulose with different structures. Materials. 2017;10(3):316.CrossRefGoogle Scholar
  16. 16.
    Enright PA, Fleischmann CM. Uncertainty of heat release rate calculation of the ISO5660-1 cone calorimeter standard test method. Fire Technol. 1999;35(2):153–69.CrossRefGoogle Scholar
  17. 17.
    Bench Zhao L. Bench scale apparatus measurement uncertainty and uncertainty effects on measurement of fire characteristics of material systems. Worcester: Worcester Polytechnic Institute; 2005.Google Scholar
  18. 18.
    Li R, Xu H, Hu H, Yang G, Wang J, Shen J. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J Energ Mater. 2014;32(1):50–9.CrossRefGoogle Scholar
  19. 19.
    Hakkarainen T, Korhonen T, Vaari J. Heat release characteristics of ethanol–water mixtures: small-scale experiments. Fire Saf J. 2017;91:174–81.CrossRefGoogle Scholar
  20. 20.
    Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Stand. 1950;44:387–93.CrossRefGoogle Scholar
  21. 21.
    Drysdale D. An introduction to fire dynamics. New York: Wiley; 2011.CrossRefGoogle Scholar
  22. 22.
    Shao Z, Wang W. Structure and properties of cellulose nitrate. Beijing: National Defense Industry Press; 2011.Google Scholar
  23. 23.
    Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.CrossRefGoogle Scholar
  24. 24.
    Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.CrossRefGoogle Scholar
  25. 25.
    Girard-Lauriault PL, Gross T, Lippitz A, Unger WE. Chemical and elemental depth profiling of very thin organic layers by constant kinetic energy XPS: a new synchrotron XPS analysis strategy. Anal Chem. 2012;84(14):5984–91.CrossRefGoogle Scholar
  26. 26.
    Wang Y, Shao Y, Matson DW, Li J, Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano. 2010;4(4):1790–8.CrossRefGoogle Scholar
  27. 27.
    Malitesta C, Losito I, Sabbatini L, Zambonin PG. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc. 1995;76:629–34.CrossRefGoogle Scholar
  28. 28.
    Niwa Y, Kobayashi H, Tsuchiya T. X-ray photoelectron spectroscopy of tetraphenylporphin and phthalocyanine. J Chem Phys. 1974;60(3):799–807.CrossRefGoogle Scholar
  29. 29.
    Girard-Lauriault PL, Desjardins P, Unger WE, Lippitz A, Wertheimer MR. Chemical characterisation of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure. Plasma Process Polym. 2008;5(7):631–44.CrossRefGoogle Scholar
  30. 30.
    Sarra-Bournet C, Gherardi N, Glénat H, Laroche G, Massines F. Effect of C2H4/N2 ratio in an atmospheric pressure dielectric barrier discharge on the plasma deposition of hydrogenated amorphous carbon-nitride films (a-C:N:H). Plasma Chem Plasma Process. 2010;30(2):213–39.CrossRefGoogle Scholar
  31. 31.
    Brisson PY, Darmstadt H, Fafard M, Adnot A, Servant G, Soucy G. X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells. Carbon. 2006;44(8):1438–47.CrossRefGoogle Scholar
  32. 32.
    Tsami A, Grillo F, Bowker M, Nix RM. Model NSR catalysts: fabrication and reactivity of barium oxide layers on Cu (1 1 1). Surf Sci. 2006;600(17):3403–18.CrossRefGoogle Scholar
  33. 33.
    Ozensoy E, Peden CH, Szanyi J. NO2 adsorption on ultrathin θ-Al2O3 films: formation of nitrite and nitrate species. J Phys Chem B. 2005;109(33):15977–84.CrossRefGoogle Scholar
  34. 34.
    Desikusumastuti A, Happel M, Dumbuya K, Staudt T, Laurin M, Gottfried JM, Steinrück H, Libuda J. Modeling NOx storage materials: on the formation of surface nitrites and nitrates and their identification by vibrational spectroscopy. J Phys Chem C. 2008;112(16):6477–86.CrossRefGoogle Scholar
  35. 35.
    Saunders C, Taylor L. A review of the synthesis, chemistry and analysis of nitrocellulose. J Energ Mater. 1990;8(3):149–203.CrossRefGoogle Scholar
  36. 36.
    Katoh K, Je L, Itoh M, Arai M, Tamura M. Study on the spontaneous ignition of cellulose nitrate effect of the type of storage atmosphere (I). Sci Technol Energ Mater. 2003;64(6):236–40.Google Scholar
  37. 37.
    Katoh K, Le L, Arai M, Tamura M. Study on the spontaneous ignition of cellulose nitrate effect of the type of storage atmosphere (II). Sci Technol Energ Mater. 2004;65:77–81.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Ocean Science and EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.School of Automotive and Transportation EngineeringHefei University of TechnologyHefeiChina
  4. 4.Department of Architecture and Civil EngineeringCity University of Hong KongHong KongChina
  5. 5.Safety and Environment InstituteChina Jiliang UniversityHangzhouChina

Personalised recommendations