Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1551–1561 | Cite as

Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage

  • Mehmet Selçuk MertEmail author
  • Hatice Hande Mert
  • Merve Sert
Article
  • 102 Downloads

Abstract

Thermal energy storage systems provide efficiency in order to have better utilization of energy sources while protecting the environment. Thermal energy storage can be classified as sensible and latent heat storage. The storage of latent heat allows a greater density of energy storage with a narrow temperature range during phase change. Phase change materials (PCMs) are important novel materials, which are used as the storage of thermal energy as latent heat, and can provide utilization of waste heat energy. In this study, the capric acid and oleic acid mixture containing hexadecane were encapsulated as the core with styrene–divinylbenzene copolymer shell by emulsion polymerization technique. Thermal properties of fatty acid microcapsules were characterized by differential scanning calorimetry and thermogravimetric analysis and also their morphology and structure were examined by scanning electron microscopy, polarized optical microscopy and Fourier transform infrared spectroscopy (FT-IR), respectively. The heat storage property of microencapsulated PCM was tested in a horizontal air flow channel system equipped with a flat heating plate, air fan and air flow sensors. The microencapsulated PCM was prepared successfully, and results of the analysis presented that this material is promising candidate for potential heating and cooling system applications.

Keywords

Energy Phase change material Encapsulation Thermal energy storage 

Notes

Acknowledgements

The authors appreciate the support of Research Fund of Yalova University (Project Number: 2017/YL/008) for the accomplishment of this work. Authors thank Dr. Ali Karaipekli (Çankırı Karatekin University, Turkey) for DSC analyses.

References

  1. 1.
    Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–615.CrossRefGoogle Scholar
  2. 2.
    Rozanna D, Chuah TG, Salmiah A, Choong TSY, Sa’ari M. Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy. 2004;1:495–513.CrossRefGoogle Scholar
  3. 3.
    Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy Build. 2010;42:1361–8.CrossRefGoogle Scholar
  4. 4.
    Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.CrossRefGoogle Scholar
  5. 5.
    Sarı A, Alkan C, Karaipekli A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energy. 2010;87(5):1529–34.CrossRefGoogle Scholar
  6. 6.
    Alay S, Alkan C, Göde F. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochim Acta. 2011;518(1–2):1–8.CrossRefGoogle Scholar
  7. 7.
    Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy. 2014;66:881–90.CrossRefGoogle Scholar
  8. 8.
    Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy. 2015;137:731–7.CrossRefGoogle Scholar
  9. 9.
    Li M, Wu Z. Thermal properties of the graphite/n-docosane composite PCM. J Therm Anal Calorim. 2013;111:77–83.CrossRefGoogle Scholar
  10. 10.
    Xia Y, Cui W, Zhang H, Zou Y, Xiang C, Chu H, Qiu S, Xu F, Sun L. Preparation and thermal performance of n-octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2018;131:81–8.CrossRefGoogle Scholar
  11. 11.
    Genc M, Karagoz-Genc Z. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim. 2018;131:2373–80.CrossRefGoogle Scholar
  12. 12.
    Meng X, Zhang H, Sun L, Xu F, Jiao Q, Zhao Z, Zhang J, Zhou H, Sawada Y, Liu Y. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim. 2013;111:377–84.CrossRefGoogle Scholar
  13. 13.
    Alkan C, Sarı A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form stable phase change materials for latent heat thermal energy storage. Sol Energy. 2008;82:118–24.CrossRefGoogle Scholar
  14. 14.
    Sarı A, Alkan C, Karaipekli A, Önal A. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Convers Manag. 2008;49(2):373–80.CrossRefGoogle Scholar
  15. 15.
    Bellemare JV. Thermally reflective encapsulated phase change pigment, United States Patent office. 2007; No. 0031652 A1.Google Scholar
  16. 16.
    Zhang X, Chao N, Zhang X, Xu J. Natural microtubule encapsulated phase- change materials and preparation thereof, United States Patent office. 2010; No. 0071882A1.Google Scholar
  17. 17.
    Hart RL, Work DE Flame resistant microencapsulated phase change materials, United States Patent office. 1995; No. 5, 435,376.Google Scholar
  18. 18.
    Hatfield JC. Encapsulation of phase change materials, United States Patent office. 1987; No. 4, 708,812.Google Scholar
  19. 19.
    Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.CrossRefGoogle Scholar
  20. 20.
    Ke H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid–liquid phase change materials for storage and retrieval of thermal energy. Appl Therm Eng. 2017;113:1319–31.CrossRefGoogle Scholar
  21. 21.
    Sharma A, Shukla A, Chen CR, Wu TN. Development of phase change materials (PCMs) for low temperature energy storage applications. Sustain Energy Technol Assess. 2014;7:17–21.Google Scholar
  22. 22.
    Karaipekli A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33:2599–605.CrossRefGoogle Scholar
  23. 23.
    Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem. 2010;16:767–73.CrossRefGoogle Scholar
  24. 24.
    Sarı A, Sarı H, Önal A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers Manag. 2004;45:365–76.CrossRefGoogle Scholar
  25. 25.
    Sarı A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability. Appl Therm Eng. 2005;25:2100–7.CrossRefGoogle Scholar
  26. 26.
    Sari A. Eutectic mixtures of some fatty acids for latent heat storage: thermal properties and thermal reliability with respect to thermal cycling. Energy Convers Manag. 2006;47:1207–21.CrossRefGoogle Scholar
  27. 27.
    Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.CrossRefGoogle Scholar
  28. 28.
    Inoue T, Hisatsugu Y, Ishikawa R, Suzuki M. Solid-liquid phase behavior of binary fatty acid mixtures 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chem Phys Lipids. 2004;127:161–73.CrossRefGoogle Scholar
  29. 29.
    Zhang H, Gao X, Chen C, Xu T, Fang Y, Zhang Z. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos Part A Appl S. 2016;87:138–45.CrossRefGoogle Scholar
  30. 30.
    Liu C, Yuan Y, Zhang N, Cao X, Yang X. A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage. Mater Lett. 2014;120:43–6.CrossRefGoogle Scholar
  31. 31.
    Zhang N, Yuan Y, Wang X, Cao X, Yang X, Hu S. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.CrossRefGoogle Scholar
  32. 32.
    Schork FJ, Luo Y, Smulders W, Russum JP, Butté A, Fontenot K. Miniemulsion polymerization. In: Okubo M, editor. Polymer particles. Advances in polymer science, vol. 175. Berlin: Springer; 2005. p. 129–255.CrossRefGoogle Scholar
  33. 33.
    Azad ARM, Ugelstad J, Fitch RM, Hansen FK. Emulsification and emulsion polymerization of styrene using mixtures of cationic surfactant and long chain fatty alcohols or alkanes as emulsifiers. ACS Symp Ser. 1976;24(1):1–23.Google Scholar
  34. 34.
    Sari A, Alkan C, Döğüşcü DK, Kızıl Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol Energy. 2015;115:195–203.CrossRefGoogle Scholar
  35. 35.
    Meltzer V, Pincu E. Thermodynamic study of binary mixture of citric acid and tartaric acid. Cent Eur J Chem. 2012;10(5):1584–9.Google Scholar
  36. 36.
    Beyhan B, Paksoy H, Daşgan Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers Manag. 2013;74:446–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Energy Systems Engineering DepartmentYalova UniversityYalovaTurkey
  2. 2.Chemical and Process Engineering DepartmentYalova UniversityYalovaTurkey

Personalised recommendations