Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1515–1526 | Cite as

In situ high-temperature X-ray diffraction, FT-IR and thermal analysis studies of the reaction between natural hydroxyapatite and aluminum powder

  • A. Mokhtari
  • H. BelhouchetEmail author
  • A. Guermat
Article
  • 98 Downloads

Abstract

The present work focuses on the study of the effects of mechanical activation on the reaction between hydroxyapatite (HAp) and aluminum metal powder using Algerian phosphate (natural HAp) as a starting raw material. Aluminum metal powder was used to obtain reinforced (HAp) composites materials with alumina. The alumina phases result from the oxidation of aluminum powder at high temperature. The reactions and phase transformations between HAp and aluminum powder were studied using thermal techniques (DTA/TG), X-ray diffraction (in situ HTXRD and standard), infrared spectroscopy (FT-IR) and SEM analysis. After mechanical treatment for different milling time, no new phases were formed from HAp and Al after 40 h of milling at room temperature. However, all mixture powders were milled for different time showing the formation of several alumina transitions during heat treatment. The oxidation of Al powder, the formation of alumina transitions (χ and κ-Al2O3), α-alumina, HAp crystallization and tricalcium phosphate (β-TCP and α-TCP) formation were affected by ball milling time. After 40 h of ball milling, the aluminum was not detected at 673 K, which confirms the solid-state oxidation of aluminum at low temperatures. The results showed the formation of high amount of α-TCP at 1173 K in the samples milled for 40 h.

Keywords

Hydroxyapatite Bioceramics In situ HTXRD Aluminum powder Thermal analysis 

References

  1. 1.
    Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.CrossRefGoogle Scholar
  2. 2.
    Coreno AJ, Coreno AO, Cruz RJJ, Rodríguez CC. Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt Mater. 2005;27:1281–5.CrossRefGoogle Scholar
  3. 3.
    Oliveira IR, Andrade TL, Araujo KCML, Luz AP, Pandolfelli VC. Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement. Ceram Int. 2016;42:2542–9.CrossRefGoogle Scholar
  4. 4.
    Sun L, Berndt CC, Grey CP. Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Mater Sci Eng A. 2003;360:70–84.CrossRefGoogle Scholar
  5. 5.
    LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.CrossRefGoogle Scholar
  6. 6.
    Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bonelikehydroxyapatite nanopowder. J Mater Process Technol. 2008;202:536–42.CrossRefGoogle Scholar
  7. 7.
    Yeong KCB, Wang J, Ng SC. Mechanochemical synthesis of nanocrystalline hydroxyapatitefrom CaO and CaHPO4. Biomaterials. 2001;22:2705–12.CrossRefGoogle Scholar
  8. 8.
    Prabakaran K, Balamurugan A, Rajeswari S. Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci. 2005;28:115–9.CrossRefGoogle Scholar
  9. 9.
    Rao WR, Boehm RF. A study of sintered apatites. J Dent Res. 1974;53:1351–4.CrossRefGoogle Scholar
  10. 10.
    De With G, Van Dijk HJA, Hattu N, Prijs K. Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyl apatite. J Mater Sci. 1981;16:1592–8.CrossRefGoogle Scholar
  11. 11.
    Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett. 2009;63:543–6.CrossRefGoogle Scholar
  12. 12.
    Fahami A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B. Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 2011;13:135–41.CrossRefGoogle Scholar
  13. 13.
    Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MI, Beaula WS, Mythili R, Venkatraman G, Kalkura SN. Blood compatibility of irondoped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces. 2012;4:1200–10.CrossRefGoogle Scholar
  14. 14.
    Li Y, Widodo J, Lim S, Ooi CP. Synthesis and cytocompatibility of manganese(II) and iron(III) substituted hydroxyapatite nanoparticles. J Mater Sci. 2012;47:754–63.CrossRefGoogle Scholar
  15. 15.
    Rao RR, Kannan TS. Synthesis and sintering of hydroxyapatite–zirconia composites. Mater Sci Eng C. 2002;20:187–93.CrossRefGoogle Scholar
  16. 16.
    Lavernia C, Schoenung JM. Calcium phosphate ceramics as bone substitutes. Bull Am Ceram Soc. 1991;70:95–100.Google Scholar
  17. 17.
    Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS. Solution synthesis of hydroxyapatite designer particulates. Solid State Ion. 2002;151:393–402.CrossRefGoogle Scholar
  18. 18.
    Fowler BO. Infrared studies of apatite’s. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatite and spectra-structure-composition correlations. Inorg Chem. 1974;13:207–14.CrossRefGoogle Scholar
  19. 19.
    Deptula A, Lada W, Olczak T, Borello A, Alvani C, Dibartolomeo A. Preparation of spherical powders of hydroxyapatite by sol-gel process. J Non-Cryst Solids. 1992;147:537–41.CrossRefGoogle Scholar
  20. 20.
    Puajindanetra S, Best SM, Bonfield W. Characterization and sintering of precipitated hydroxyapatite. Br Ceram Trans J. 1994;93:96–9.Google Scholar
  21. 21.
    Hattori H, Iwadate Y. Hydrothermal preparation of calcium hydroxyapatite powders. J Am Ceram Soc. 1990;73:1803–5.CrossRefGoogle Scholar
  22. 22.
    Murray MGS, Wang J, Ponton CB, Marquis PM. An improvement in processing of hydroxyapatite ceramics. J Mater Sci. 1995;30:3061–74.CrossRefGoogle Scholar
  23. 23.
    Boughzala K, Fattah N, BouzouitanK Benhassine H. Etude minéralogique et chimique du phosphate naturel d’Oum El Khecheb (Gafsa, Tunisie). Rev Sci Mater. 2015;06:11–29.Google Scholar
  24. 24.
    EL-Gaini L, Meghea A, Bakasse M. Photo transformation of pesticide in the presence of moroccannatural phosphate in aqueous solution. J Opt Adv Mater. 2010;12:1981–5.Google Scholar
  25. 25.
    Abouzeid AM. Physical and thermal treatment of phosphate ores: an overview. Int J Miner Process. 2008;85:59–84.CrossRefGoogle Scholar
  26. 26.
    Tjong SC. Processing and deformation characteristics of metals reinforced with ceramic nanoparticles. In: Waltham MA, editor. Nanocrystalline materials. Second ed. Oxford: Elsevier; 2014.Google Scholar
  27. 27.
    Azom K. Aluminum dross recycling: a new technology for recycling aluminum waste products. A Z Mat. 2002;24:346–53.Google Scholar
  28. 28.
    Kim J, Biswas K, Jhon WK, Jeong YS, Ahn SW. Synthesis of AlPO4−5 and CrAPO-5 using aluminum dross. J Hazard Mater. 2009;169:919–25.CrossRefGoogle Scholar
  29. 29.
    Shinzato MC, Hypolito R. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. 2005;25:37–46.CrossRefGoogle Scholar
  30. 30.
    Tamborenea S, Mazzoni AD, Aglietti EF. Mechanochemical activation of minerals on the cordierite synthesis. Thermochim Acta. 2004;411:219–24.CrossRefGoogle Scholar
  31. 31.
    Neto JBR, Moreno R. Effect of mechanical activation on the rheology and casting performance of kaolin/talc/alumina suspensions for manufacturing dense cordierite bodies. Appl Clay Sci. 2008;38:209–18.CrossRefGoogle Scholar
  32. 32.
    Boldyrev VV. Mechanochemistry and mechanical activation of solids. Solid State Ion. 1993;63–65:537–43.CrossRefGoogle Scholar
  33. 33.
    Chen L, Ye G, Xu D, Zhu L, Lu Z, Dong L, Liu Y. Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Mater Lett. 2012;85:91–4.CrossRefGoogle Scholar
  34. 34.
    Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R. A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal treatment of bovine bone. J Ind Eng Chem. 2014;20:245–58.CrossRefGoogle Scholar
  35. 35.
    Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R. Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceram Int. 2013;39:5751–63.CrossRefGoogle Scholar
  36. 36.
    Fahamin A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R. Synthesis of calcium phosphate-based composite nanopowders by mechanochemical process and subsequent thermal treatment. Ceram Int. 2012;38:6729–38.CrossRefGoogle Scholar
  37. 37.
    Fakharzadeh A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B, Basirun WJ. Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram Int. 2017;43:12588–98.CrossRefGoogle Scholar
  38. 38.
    Vlasova M, Fedotov A, Torrez IM, Kakazey M, Komlev V, Aguilar PAM. Mechanosynthesis of hydroxyapatite–ferrite composite nanopowder. Ceram Int. 2017;43:6221–31.CrossRefGoogle Scholar
  39. 39.
    Belhouchet H, Chouia F, Hamidouche M, Leriche A. Preparation and characterization of anorthite and hydroxyapatite from Algerian kaolin and natural phosphate. J Therm Anal Calorim. 2016;126:1045–57.CrossRefGoogle Scholar
  40. 40.
    Juang HY, Hon MH. Fabrication and mechanical properties of hydroxyapatite-alumina composites. Mater Sci Eng C. 1994;2:77–81.CrossRefGoogle Scholar
  41. 41.
    Lin K, Chang J, Cheng R, Ruan M. Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater Lett. 2007;61:1683–7.CrossRefGoogle Scholar
  42. 42.
    Trunov MA, Schoenitz M, Zhu X, Dreizin EL. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140:310–8.CrossRefGoogle Scholar
  43. 43.
    Haberko K, Bućko MM, Brzezińska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarebski J. Natural hydroxyapatite-its behaviour during heat treatment. J Eur Ceram Soc. 2006;26:537–42.CrossRefGoogle Scholar
  44. 44.
    Anunziata OA, Martínez ML, Beltramone AR. Hydroxyapatite/MCM-41 and SBA-15 nano-composites: preparation, characterization and applications. Materials. 2009;2:1508–19.CrossRefGoogle Scholar
  45. 45.
    Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.Google Scholar
  46. 46.
    Kawata M, Uchida H, Itatani K, Okada I, Koda S, Aizawa M. Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations. J Mater Sci Mater Med. 2004;15:817–23.CrossRefGoogle Scholar
  47. 47.
    Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-typecarbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708.CrossRefGoogle Scholar
  48. 48.
    Varma HK, Babu SS. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int. 2005;31:109–14.CrossRefGoogle Scholar
  49. 49.
    Sahraoui T, Belhouchet H, Heraiz M, Brihi N, Guermat A. The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram Int. 2016;42:12185–93.CrossRefGoogle Scholar
  50. 50.
    Fahami A, Nasiri-Tabrizi B. Mechanochemical behavior of CaCO3–P2O5–CaF2system to produce carbonated fluorapatite nanopowder. Ceram Int. 2014;40:14939–46.CrossRefGoogle Scholar
  51. 51.
    Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys B. 2010;405:4256–61.CrossRefGoogle Scholar
  52. 52.
    Esharghawi A, Penot C, Nardou F. Elaboration of porous mullite-based materials via SHS reaction. Ceram Int. 2010;36:231–9.CrossRefGoogle Scholar
  53. 53.
    Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline Hydroxyapatite. Mater Sci Eng C. 2014;43:153–63.CrossRefGoogle Scholar
  54. 54.
    Massit A, Yacoubi A, El-Idrissi BC, Yamni K. Synthese de nanoparticules de phosphate tricalcique β par voie aqueuse. Verr Céram Compos. 2015;4:1–6.Google Scholar
  55. 55.
    Koumoulidis GC, Katsoulidis AP, Ladavos AK, Pomonis PJ, Trapalis CC, Sdoukos AT, Vaimakis TC. Preparation of hydroxyapatite via microemulsion route. J Colloid Interface Sci. 2003;259:254–60.CrossRefGoogle Scholar
  56. 56.
    Bolelli G, Bellucci D, Cannillo V, Lusvarghi L, Sola A, Stiegler N, Muller P, Killinger A, Gadow R, Altomare L, De-Nardo L. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behavior. Mater Sci Eng C. 2014;34:287–303.CrossRefGoogle Scholar
  57. 57.
    Esharghawi A, Penot C, Nardou F. Contribution to porous mullite synthesis from clays by adding Al and Mg powders. J Eur Ceram Soc. 2009;29:31–8.CrossRefGoogle Scholar
  58. 58.
    Ebadzadeh T. Porous mullite-ZrO2 composites from reaction sintering of zircon and aluminum. Ceram Int. 2005;31:1091–5.CrossRefGoogle Scholar
  59. 59.
    Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatite’s with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders. Biomaterials. 2002;23:1065–72.CrossRefGoogle Scholar
  60. 60.
    Jang SW, Lee HY, Lee SM. Mechanical activation effect on the transition of gibbsite to α-alumina. J Mater Sci Lett. 2000;19:507–10.CrossRefGoogle Scholar
  61. 61.
    Sobczak-Kupiec A, Wzorek Z. The influence of calcinationparameters on free calcium oxide content in natural hydroxyapatite. Ceram Int. 2012;38:641–7.CrossRefGoogle Scholar
  62. 62.
    Chang PL, Wu YC, Lai SJ, Yen FS. Size effects on χ- to α-Al2O3 phase transformation. J Eur Ceram Soc. 2009;29:3341–8.CrossRefGoogle Scholar
  63. 63.
    Santos PS, Santos HS, Toledo SP. Standard transition aluminas: electron microscopy studies. Mater Res. 2000;3:104–14.CrossRefGoogle Scholar
  64. 64.
    Zhanga C, Zhanga X, Liu C, Sun K, Yuan J. Nano-alumina/hydroxyapatite composite powders prepared by in situ chemical precipitation. Ceram Int. 2016;42:279–85.CrossRefGoogle Scholar
  65. 65.
    Boumaza A, Favaro L, Lédion J, Sattonnay G, Brubach JB, Berthet P, Huntz AM, Royc P, Tétot R. Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem. 2009;182:1171–6.CrossRefGoogle Scholar
  66. 66.
    Panda RN, Hsieh MF, Chung RJ, Chin TS. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids. 2003;64:193–9.CrossRefGoogle Scholar
  67. 67.
    Nordin JA, Prajitno DH, Saidin S, Nur H, Hermawan H. Structure–property relation ships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method. Mater Sci Eng C. 2015;51:294–9.CrossRefGoogle Scholar
  68. 68.
    Fondeur F, Koenig JL. FT-IR characterization of the surface of aluminum as a result of chemical treatment. J Adhes. 1993;40:189–205.CrossRefGoogle Scholar
  69. 69.
    Koumoulidis GC, Trapalis CC, Vaimakis TC. Sintering of hydroxyapatite lath-like powder. J Therm Anal Calorim. 2006;84:165–74.CrossRefGoogle Scholar
  70. 70.
    Lala S, Satpati B, Kar T, Pradhan SK. Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying. J Mater Sci Eng C. 2013;33:2891–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceUniversity Mohamed Boudiaf of M’silaM’silaAlgeria
  2. 2.Non Metallic Materials Laboratory, Institute of Optics and Precision MechanicsUniversity of Ferhat Abbas Sétif 1SétifAlgeria
  3. 3.Applied Optics Laboratory, Institute of Optics and Precision MechanicsUniversity of Ferhat Abbas Sétif 1SétifAlgeria

Personalised recommendations