Calorimetric and structural studies of organic compound of tris(pentafluorophenyl)-4-pyridylethylgermane

  • O. G. Zamyshlyayeva
  • A. V. MarkinEmail author
  • N. N. Smirnova
  • S. S. Sologubov
  • L. S. Blinova
  • A. S. Shavyrin
  • R. V. Rumyantsev
  • G. K. Fukin


In the present research, the temperature dependence of heat capacity of tris(pentafluorophenyl)-4-pyridylethylgermane (C6F5)3Ge–CH2–CH2–C5H4N was studied by precise adiabatic vacuum calorimetry and differential scanning calorimetry over the temperature range from 6 to 450 K. The temperature and enthalpy of fusion of tris(pentafluorophenyl)-4-pyridylethylgermane and the total mole fraction of impurities have been determined. The thermal stability of the sample was investigated by thermogravimetric analysis. The experimental data were used to calculate the standard thermodynamic functions: heat capacity, enthalpy, entropy, and the Gibbs energy over the range from T → 0 to 420 K for crystalline and liquid states. For the compound under study, the standard entropy of formation in the crystalline state was calculated at T = 298.15 K. In addition, the structure of the investigated compound was established, and corresponding structural parameters were determined.


Tris(pentafluorophenyl)-4-pyridylethylgermane Adiabatic vacuum calorimetry DSC Thermogravimetric analysis Heat capacity Thermodynamic functions 



This work was performed with the financial support of the Ministry of Education and Science of the Russian Federation (Contracts Nos. 4.6138.2017/6.7 and 4.5706.2017/8.9) and the Russian State Assignment (Theme No. 44.2, Reg. No. AAAA-A16-116122110053-1). The elemental analysis was conducted based on equipment of the Common Use Center « New Materials and Resource-saving Technologies» of the Research Institute for Chemistry of National Research Lobachevsky State University of Nizhny Novgorod.


  1. 1.
    Chambers RD. Fluorine in organic chemistry. Oxford: Blackwell Publishing Ltd.; 2004.CrossRefGoogle Scholar
  2. 2.
    Bardin VV. Synthesis of bis(pentafluorophenyl)phenylhalogenogermanes and bis(pentafluorophenyl)dihalogenogermanes, (C6F5)2GeXY (X = Ph, Y = Br, Cl; X = Y = F, Cl, Br). J Organomet Chem. 2016;822:46–52.CrossRefGoogle Scholar
  3. 3.
    Song B, Yang S, Zhong H, Jin L, Hu D, Liu G. Synthesis and bioactivity of 2-cyanoacrylates containing a trifluoromethylphenyl moiety. J Fluor Chem. 2005;126:7–92.CrossRefGoogle Scholar
  4. 4.
    Banks RE, Smart BE, Tatlow JC. Organofluorine. Chemistry principles and commercial applications. New York: Plenum; 1994.CrossRefGoogle Scholar
  5. 5.
    Kissa E. Fluorinated surfactants: synthesis, properties, applications. Surfactant Science Series, Vol. 50. New York: Marcel Dekker; 1994.Google Scholar
  6. 6.
    Kronberg B, Holmberg K, Lindman B. Surface chemistry of surfactants and polymers. Chichester: Wiley; 2014.CrossRefGoogle Scholar
  7. 7.
    Guo W, Brown TA, Fung BM. Micelles and aggregates of fluorinated surfactants. J Phys Chem. 1991;95:1829–36.CrossRefGoogle Scholar
  8. 8.
    Magueur G, Crousse B, Charneau S, Grellier P, Begue JP, Bonnet-Delpon D. Fluoroartemisinin: trifluoromethyl analogues of artemether and artesunate. J Med Chem. 2004;47:2694–9.CrossRefGoogle Scholar
  9. 9.
    Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem. 2002;45:740–3.CrossRefGoogle Scholar
  10. 10.
    Abdou IM, Saleh AM, Zohdi HF. Synthesis and antitumor activity of 5-trifluoromethyl-2,4- dihydropyrazol-3-one nucleosides. Molecules. 2004;9:109–16.CrossRefGoogle Scholar
  11. 11.
    Filler R. Biochemistry involving carbon–fluorine bonds. Washington: American Chemical Society; 1976.CrossRefGoogle Scholar
  12. 12.
    Bhamaria RP, Bellare RA, Deliwala CV. In intro effect of 1-acyl-4-alkyl-(oraryl)-thiosemicarbazides 1-(5-chlorosalicylidine)-4-alkyl-(oraryl)-thiosemicarbazones and some hydrazones of 5-chlorosalicylaldehyde against pathogenic bacteria including mycobacterium tuberculosis (H37Rv). Indian J Exp Biol. 1968;6:62–3.PubMedGoogle Scholar
  13. 13.
    Fujiwara T, Takeuchi Y. Synthesis, reactions, and applications of fluorine-containing multifunctional carbon compounds. J Fluor Chem. 2005;126:941–55.CrossRefGoogle Scholar
  14. 14.
    Salunkhe NG. Green synthesis, characterization and biological evaluation of some triazole and thiadiazole. J Curr Chem Pharm Sci. 2012;2(2):100–6.Google Scholar
  15. 15.
    Ishikawa N. Synthesis function of fluorinated compounds. CMC: Tokyo; 1987.Google Scholar
  16. 16.
    Zamyshlyaeva OG, Lapteva OS, Blinova LS, Fukin GK. Tris-(pentafluorophenyl)-4-pyridylethylgermane and method for production thereof. Patent RU 2591958 C1; 2016.Google Scholar
  17. 17.
    Gasilova ER, Saprykina NN, Zamyshlyayeva OG, Semchikov YuD, Bochkarev MN. Hyperbranched perfluorinated poly(phenylenegermanes) obtained by polycondensation of A2B2 and AB3 monomers. J Phys Org Chem. 2010;23:1099–107.CrossRefGoogle Scholar
  18. 18.
    SAINT. Data reduction and correction program., v. 8.34A and v.8.37A, Bruker AXS, Madison, Wisconsin, USA. 2014.Google Scholar
  19. 19.
    Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8.Google Scholar
  20. 20.
    Sheldrick GM. SADABS 2012/1, Bruker AXS area detector scaling and absorption correction. Madison: Bruker AXS; 1998.Google Scholar
  21. 21.
    Piskunov AV, Aivaz’yan IA, Poddel’sky AI, Fukin GK, Baranov EV, Cherkasov VK, Abakumov GA. New germanium complexes containing ligands based on 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone in different redox states. Eur J Inorg Chem. 2008;8:1435–44.CrossRefGoogle Scholar
  22. 22.
    Uhl W, Bohnemann J, Kappelt B, Malessa K, Rohling M, Tannert J, Layh M, Hepp A. Hydrometallation (M = Al, Ga) of silicon- and germanium-centred oligoalkynes. Z Naturforsch. 2014;69b:1333–47.CrossRefGoogle Scholar
  23. 23.
    Rohwer H, Dillen J. Deviation from tetrahedral geometry in Me2GeCl2: crystal structure of a model compound and insight from ab initio calculations. Inorg Chem. 2002;41:4167–72.CrossRefGoogle Scholar
  24. 24.
    Batsanov SS. Van der Waals radii of elements. Inorg Mater. 2001;37:871–85.CrossRefGoogle Scholar
  25. 25.
    Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–7.CrossRefGoogle Scholar
  26. 26.
    Malyshev VM, Milner GA, Sorkin EL, Shibakin VF. Automatic low-temperature calorimeter. Prib Tekh Eksp. 1985;6:195–7 [in Russian].Google Scholar
  27. 27.
    Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Heidelberg: Springer; 2003.CrossRefGoogle Scholar
  28. 28.
    Drebushchak VA. Calibration coefficients of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.CrossRefGoogle Scholar
  29. 29.
    Aleksandrov YuI. Tochnaya Kriometriya Organicheskih Veshestv. Leningrad: Khimiya; 1975.Google Scholar
  30. 30.
    Rabinovich IB, Nistratov VP, Telnoy VI, Sheiman MS. Thermochemical and thermodynamic properties of organometallic compounds. New York: Begell House Inc., Publishers; 1999.Google Scholar
  31. 31.
    Sologubov SS, Markin AV, Smirnova NN, Rybakova YuA, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups. J Therm Anal Calorim. 2016;125:595–606.CrossRefGoogle Scholar
  32. 32.
    McCullough JP, Scott DW. Calorimetry of non-reacting systems. London: Butterworth; 1968.Google Scholar
  33. 33.
    Chase MW Jr. NIST-JANAF thermochemical tables, 4th ed. J Phys Chem Ref Data Monogr. 1998;9:1951. Accessed 5 July 2018.
  34. 34.
    Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York; 1989. Accessed 5 July 2018.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • O. G. Zamyshlyayeva
    • 1
  • A. V. Markin
    • 1
    Email author
  • N. N. Smirnova
    • 1
  • S. S. Sologubov
    • 1
  • L. S. Blinova
    • 1
  • A. S. Shavyrin
    • 2
  • R. V. Rumyantsev
    • 2
  • G. K. Fukin
    • 2
  1. 1.National Research Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
  2. 2.Razuvaev Institute of Organometallic Chemistry of Russian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations