Combustion behavior and thermal stability of ethylene-vinyl acetate composites based on CaCO3-containing oil sludge and carbon black

  • Shaojie Zhou
  • Shanshan Li
  • Xuesong Cao
  • Yi QianEmail author
  • Long LiEmail author
  • Xilei Chen


CaCO3-containing oil sludge (OS) is a by-product from petroleum industry, with great amount of production. Therefore, an effective processing methods for CaCO3-containing OS is urgently needed. Herein, ethylene-vinyl acetate (EVA) composites based on CaCO3-containing OS and carbon black (CB) were prepared by melt blending method. The combustion behavior and thermal stability of flame-retardant EVA/OS/CB composites were investigated by cone calorimeter test, limiting oxygen index (LOI), scanning electron microscopy (SEM), smoke density test (SDT), and thermogravimetry-Fourier infrared spectrometry. The heat release rate and smoke production rate of the ternary composites containing 3% CB significantly decreased compared with the EVA/OS composites and pure EVA. Moreover, addition of a certain amount of CB could evidently increase LOI values. The morphologies and structures of the residues, revealed by SEM, ascertained that a better carbonaceous protective layer was formed on the ternary composites than the EVA/OS composite. It was obtained from SDT that CB in the material could retard the smoke production with the application of the pilot flame. The EVA/OS/CB composites assumed a higher thermal stability than the EVA/OS composites and pure EVA.


Carbon black Oil sludge Thermal stability Combustion behavior Ethylene-vinyl acetate 



We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51372129 and 51572138) and the Project of People’s Livelihood Science and Technology of Qingdao City (No. 16-6-2-54-nsh).


  1. 1.
    Shen Y, Chen X, Wang J, Ge X, Chen M. Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel. 2016;182:871–8.CrossRefGoogle Scholar
  2. 2.
    Cheng S, Wang Y, Gao N, Takahashi F, Li A, Yoshikawa K. Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor. J Anal Appl Pyrol. 2016;120:511–20.CrossRefGoogle Scholar
  3. 3.
    Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater. 2013;261:470–90.CrossRefGoogle Scholar
  4. 4.
    Cameotra SS, Singh P. Bioremediation of oil sludge using crude biosurfactants. Int Biodeter Biodegr. 2008;62(3):274–80.CrossRefGoogle Scholar
  5. 5.
    Jiang GC, Xie SX, Chen M, Wang RS, Li ZY, Mao H, et al. A study on oil sludge fueling treatment and its mechanism in field operations. Pet Sci Technol. 2013;31(2):174–84.CrossRefGoogle Scholar
  6. 6.
    Soyama M, Inoue K, Iji M. Flame retardancy of polycarbonate enhanced by adding fly ash. Polym Adv Technol. 2007;18(5):386–91.CrossRefGoogle Scholar
  7. 7.
    Qian Y, Li S, Chen X. Synthesis and characterization of LDHs using Bayer red mud and its flame-retardant properties in EVA/LDHs composites. J Mater Cycles Waste Manag. 2015;17(4):646–54.CrossRefGoogle Scholar
  8. 8.
    Yao ZT, Chen T, Li HY, Xia MS, Ye Y, Zheng H. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J Hazard Mater. 2013;262:212–7.CrossRefGoogle Scholar
  9. 9.
    Deodhar S, Shanmuganathan K, Fan Q, Wilkie CA, Costache MC, Dembsey NA, et al. Calcium carbonate and ammonium polyphosphate-based flame retardant composition for polypropylene. J Appl Polym Sci. 2011;120(3):1866–73.CrossRefGoogle Scholar
  10. 10.
    Xu J, Jiao Y, Zhang B, Qu H, Yang G. Tin dioxide coated calcium carbonate as flame retardant for semirigid poly(vinyl chloride). J Appl Polym Sci. 2006;101(1):731–8.CrossRefGoogle Scholar
  11. 11.
    Hamdani S, Longuet C, Lopez-Cuesta J-M, Ganachaud F. Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties. Polym Degrad Stab. 2010;95(9):1911–9.CrossRefGoogle Scholar
  12. 12.
    Wu X, Wang L, Wu C, Wang G, Jiang P. Flammability of EVA/IFR (APP/PER/ZB system) and EVA/IFR/synergist (CaCO3, NG, and EG) composites. J Anal Appl Pyrol. 2012;126(6):1917–28.Google Scholar
  13. 13.
    Qian Y, Zhu X, Li S, Chen X. Flame-retardant properties of ethylene-vinyl acetate/oil sludge/fumed silica composites. RSC Adv. 2016;6(67):63091–8.CrossRefGoogle Scholar
  14. 14.
    Qian Y, Li S, Chen X. Flame-retardant properties of ethylene-vinyl acetate/oil sludge/ammonium polyphosphate composites. Environ Prog Sustain Energy. 2015;34(6):1731–9.CrossRefGoogle Scholar
  15. 15.
    Fu H, Liu H, Mao J, Chu W, Li Q, Alvarez PJ, et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation. Environ Sci Technol. 2016;50(3):1218–26.CrossRefGoogle Scholar
  16. 16.
    Wen X, Wang Y, Gong J, Liu J, Tian N, Wang Y, et al. Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym Degrad Stab. 2012;97(5):793–801.CrossRefGoogle Scholar
  17. 17.
    Gong J, Niu R, Tian N, Chen X, Wen X, Liu J, et al. Combination of fumed silica with carbon black for simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene. Polymer. 2014;55(13):2998–3007.CrossRefGoogle Scholar
  18. 18.
    Cecen V, Thomann R, Mülhaupt R, Friedrich C. Thermal conductivity, morphology and mechanical properties for thermally reduced graphite oxide-filled ethylene vinylacetate copolymers. Polymer. 2017;132:294–305.CrossRefGoogle Scholar
  19. 19.
    Li L, Qian Y, Jiao C. Synergistic flame retardant effects of ammonium polyphosphate in ethylene-vinyl acetate/layered double hydroxides composites. Polym Eng Sci. 2014;54(4):766–76.CrossRefGoogle Scholar
  20. 20.
    Li XQ, Feng Z, Xia Y, Zeng HC. Protein-assisted synthesis of double-shelled CaCO3 microcapsules and their mineralization with heavy metal ions. Chem Eur J. 2012;18(7):1945–52.CrossRefGoogle Scholar
  21. 21.
    Ni M, Ratner BD. Differentiation of calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF-SIMS study. Surf Interface Anal. 2008;40(10):1356–61.CrossRefGoogle Scholar
  22. 22.
    Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.CrossRefGoogle Scholar
  23. 23.
    Schartel B, Schmaucks G. Flame retardancy synergism in polymers through different inert fillers’ geometry. Polym Eng Sci. 2017;57(10):1099–109.CrossRefGoogle Scholar
  24. 24.
    Zhuo J, Xie L, Liu G, Chen X, Wang Y. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. J Therm Anal Calorim. 2017;129(1):357–66.CrossRefGoogle Scholar
  25. 25.
    Huang J, Liang M, Feng C, Liu H. Synergistic effects of 4A zeolite on the flame-retardant properties and thermal stability of an efficient halogen-free flame-retardant EVA composite. Polym Eng Sci. 2016;56(4):380–7.CrossRefGoogle Scholar
  26. 26.
    Qian Y, Zhou SJ, Chen XL. Flammability and thermal degradation behavior of ethylene-vinyl acetate/layered double hydroxides/zinc borate composites. Polym Adv Technol. 2017;28(3):353–61.CrossRefGoogle Scholar
  27. 27.
    Bhat T, Kandare E, Gibson AG, Di Modica P, Mouritz AP. Compressive softening and failure of basalt fibre composites in fire: modelling and experimentation. Compos Struct. 2017;165:15–24.CrossRefGoogle Scholar
  28. 28.
    Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, et al. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol. 2015;113:31–7.CrossRefGoogle Scholar
  29. 29.
    Gong J, Niu R, Liu J, Chen X, Wen X, Mijowska E, et al. Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv. 2014;4(64):33776–84.CrossRefGoogle Scholar
  30. 30.
    Fu M, Qu B. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym Degrad Stab. 2004;85(1):633–9.CrossRefGoogle Scholar
  31. 31.
    Grexa O, Lübke H. Flammability parameters of wood tested on a cone calorimeter. Polym Degrad Stab. 2001;74(3):427–32.CrossRefGoogle Scholar
  32. 32.
    Kim NK, Bhattacharyya D. Development of fire resistant wool polymer composites: mechanical performance and fire simulation with design perspectives. Mater Des. 2016;106:391–403.CrossRefGoogle Scholar
  33. 33.
    Feng C, Liang M, Chen W, Huang J, Liu H. Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. J Anal Appl Pyrol. 2015;113:266–73.CrossRefGoogle Scholar
  34. 34.
    Li L, Qian Y, Jiao CM. Influence of red phosphorus on the flame-retardant properties of ethylene vinyl acetate/layered double hydroxides composites. Iran Polym J. 2012;21(9):557–68.CrossRefGoogle Scholar
  35. 35.
    Wang L, Jiang PK. Thermal and flame retardant properties of ethylene-vinyl acetate copolymer/modified multiwalled carbon nanotube composites. J Anal Appl Pyrol. 2011;119(5):2974–83.Google Scholar
  36. 36.
    Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36(3):203–15.CrossRefGoogle Scholar
  37. 37.
    Idumah CI, Hassan A, Bourbigot S. Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrol. 2017;123:65–72.CrossRefGoogle Scholar
  38. 38.
    Chen X, Wang W, Li S, Jiao C. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer. J Hazard Mater. 2017;324:789–96.CrossRefGoogle Scholar
  39. 39.
    Gao Y, Wu J, Wang Q, Wilkie CA, O’Hare D. Flame retardant polymer/layered double hydroxide nanocomposites. J Mater Chem A. 2014;2(29):10996–1016.CrossRefGoogle Scholar
  40. 40.
    Liu C, Yao Q. Design and synthesis of efficient phosphorus flame retardant for polycarbonate. Ind Eng Chem Res. 2017;56(31):8789–96.CrossRefGoogle Scholar
  41. 41.
    Rao WH, Hu ZY, Xu HX, Xu YJ, Qi M, Liao W, et al. Flame-retardant flexible polyurethane foams with highly efficient melamine salt. Ind Eng Chem Res. 2017;56(25):7112–9.CrossRefGoogle Scholar
  42. 42.
    Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta J-M. Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polym Adv Technol. 2018;29(1):69–83.CrossRefGoogle Scholar
  43. 43.
    Bereska A, Kafarski P, Bereska B, Tkacz B, Iłowska J, Lenża J. The application of organophosphorus flame-retardants in epoxy resin. J Vinyl Addit Technol. 2017;23(2):142–51.CrossRefGoogle Scholar
  44. 44.
    Jia C, Qian Y, Chen X, Liu Y. Flame retardant ethylene-vinyl acetate composites based on layered double hydroxides with zinc hydroxystannate. Polym Eng Sci. 2014;54(12):2918–24.CrossRefGoogle Scholar
  45. 45.
    Costache MC, Jiang DD, Wilkie CA. Thermal degradation of ethylene–vinyl acetate coplymer nanocomposites. Polymer. 2005;46(18):6947–58.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations