Advertisement

Kinetic study of the multistep thermal behaviour of barium titanyl oxalate prepared via chemical precipitation method

  • N. V. Sindhu
  • K. Muraleedharan
Article
  • 33 Downloads

Abstract

This study describes the physico-geometrical mechanism and overall kinetics for the multistep thermal dehydration of barium titanyl oxalate tetrahydrate (BTO). The thermal dehydration kinetics of BTO was studied at four different linear heating rates under non-isothermal conditions. The reaction kinetics was performed using differential scanning calorimetry (DSC) and the curves obtained were analysed using different isoconversional model-free equations and the values are found to be compatible with each other. The kinetic deconvolution principle is used for identifying the partially overlapped kinetic processes of the thermal dehydration of BTO, and it occurs in two stages. The overall reaction kinetics parameters calculated via kinetic deconvolution of the sample indicate the multistep nature of the process and the kinetic analysis of the non-isothermal data of this reaction model shows that the reaction is best described by Sestak–Berggren (m, n) empirical kinetic model. The prepared sample was identified and characterized by means of FT-IR, XRD, SEM, and TEM.

Keywords

Dehydration kinetics Kinetic deconvolution Boswell Tang Starink1.95 Starink1.92 

References

  1. 1.
    Min C, Kim S, Lee C. Morphology of barium titanate particles produced by homogeneous precipitation. Bull Korean Chem Soc. 1997;18:600–3.Google Scholar
  2. 2.
    Pfaff G. Sol-gel synthesis of barium titanate powders of various compositions. J Mater Chem. 1992;2:591–4.CrossRefGoogle Scholar
  3. 3.
    Hoffmann T, Doll T, Fuenzalida VM. Fabrication of BaTiO3 microstructures by hydrothermal growth. J Electrochem Soc. 1997;144:292–3.CrossRefGoogle Scholar
  4. 4.
    Pechini MP. Barium titanium citrate, barium titanium and processes for producing same. Patent US 3231328. 1996.Google Scholar
  5. 5.
    Kim JG, Ha JG, Lim TW, Park K. Preparation of porous BaTiO3-based ceramics by high-energy ball-milling process. Mater Lett. 2006;60:1505–8.CrossRefGoogle Scholar
  6. 6.
    Vinothini V, Singh P, Balasubramanian M. Synthesis of barium titanate nanopowder using polymeric precursor method. Ceram Int. 2006;32:99–103.CrossRefGoogle Scholar
  7. 7.
    Ghosh S, Dasgupta S, Sen A, Maiti HS. Synthesis of barium titanate nanopowder by a soft chemical process. Mater Lett. 2007;61:538–41.CrossRefGoogle Scholar
  8. 8.
    Jung YJ, Lim DY, Nho JS, Cho SB, Riman RE, Lee BW. Glycothermal synthesis and characterization of tetragonal barium titanate. J Cryst Growth. 2005;274:638–52.CrossRefGoogle Scholar
  9. 9.
    Ragulya AV, Vasylkiv OO, Skorokhod VV. Synthesis and sintering of nanocrystalline barium titanate powder under nonisothermal conditions. I. Control of dispersity of barium titanate during its synthesis from barium titanyl oxalate. Powder Metall Met Ceram. 1997;36:170–5.CrossRefGoogle Scholar
  10. 10.
    Bera J, Sarkar D. Formation of BaTiO3 from barium oxalate and TiO2. J Electroceram. 2003;11:131–7.CrossRefGoogle Scholar
  11. 11.
    Wada S, Narahara M, Hoshina T, Kakemoto H, Tsurumi T. Preparation of nm-sized BaTiO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate. J Mater Sci. 2003;38:2655–60.CrossRefGoogle Scholar
  12. 12.
    Huang C, Chen K, Chiu P, Sze P, Wang Y. The novel formation of barium titanate nanodendrites. J Nanomed. 2014;2014:1–7.Google Scholar
  13. 13.
    Clabaugh WS, Swiggard EM, Gilchrist R. Preparation of barium titanyl oxalate tetrahydrate for conversion to barium titanate of high purity. J Res Nat Bur Stand (U.S.). 1956;56:289–91.CrossRefGoogle Scholar
  14. 14.
    Kudaka K, Ilzumi K, Sasaki K. Preparation of stoichiometric barium titanyl oxalate tetrahydrate. J Am Ceram Soc Bull. 1982;61:1236.Google Scholar
  15. 15.
    Fang TT, Lin HB. Factors affecting the preparation of barium titanyl oxalate tetrahydrate. J Am Ceram Soc. 1989;72:1899–906.CrossRefGoogle Scholar
  16. 16.
    Fang TT, Lin HB, Hwang JB. Thermal analysis of precursors of barium titanate prepared by co-precipitation. J Am Ceram Soc. 1990;73:3363–7.CrossRefGoogle Scholar
  17. 17.
    Yamamura H, Watanabe A, Shirasaki S, Moriyoshi Y, Tanada M. Preparation of barium titanate by oxalate method in ethanol solution. Ceram Int. 1985;11:17–22.CrossRefGoogle Scholar
  18. 18.
    Amala Sekar M, Dhanaraj G, Bhat HL, Patil KC. Synthesis of fine-particle titanates by the pyrolysis of oxalate precursors. J Mater Sci. 1992;3:237–9.Google Scholar
  19. 19.
    Otta S, Bhattamisra SD. Kinetics and mechanism of the thermal decomposition of barium titanyl oxalate. J Therm Anal. 1994;41:419–33.CrossRefGoogle Scholar
  20. 20.
    Gallagher PK, Schrey F. Preparation of semiconducting titanates by chemical methods. J Am Ceram Soc. 1963;46:567.CrossRefGoogle Scholar
  21. 21.
    Balek V, Kaisersberger E. Preparation of BaTiO3 by thermal decomposition of BTO simultaneously investigated by emanation thermal analysis, TG-DTA and EGA. Thermochim Acta. 1985;85:207–10.CrossRefGoogle Scholar
  22. 22.
    Kiss K, Magder J, Vukasovigh MS, Lockhart RJ. Ferroelectrics of ultrafine particles size: 1. Synthesis of titanate powders of ultrafine particle size. J Am Ceram Soc. 1966;49:291.CrossRefGoogle Scholar
  23. 23.
    Saburi O. Semiconducting bodies in the family of barium titanates. J Am Ceram Soc. 1961;44:54–63.CrossRefGoogle Scholar
  24. 24.
    Gallagher PK, Thomson J. Thermal analysis of some barium and strontium titanyl oxalates. J Am Ceram Soc. 1965;48:644–7.CrossRefGoogle Scholar
  25. 25.
    Swilam MN, Gadalla AM. Decomposition of barium titanyl oxalate and assesment of barium titanate produced at various temperatures. Trans J Brit Ceram Soc. 1975;74:159.Google Scholar
  26. 26.
    Yen FS, Chang CT, Chang YH. Characterization of BTO tetrahydrate. J Am Ceram Soc. 1990;73:3422.CrossRefGoogle Scholar
  27. 27.
    Gopalakrishnamurthy HS, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates–1. Barium titanyl oxalate. J Inorg Nucl Chem. 1975;37:891–8.CrossRefGoogle Scholar
  28. 28.
    Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J Therm Anal Calorim. 2016;123:643–51.CrossRefGoogle Scholar
  29. 29.
    Fu XL, Fan XZ, Wang BZ, Huo H, Li JZ, Hu RZ. Thermal behavior, decomposition mechanism and thermal safety of 5, 7-diamino-4,6-dinitrobenzenfuroxan (CL-14). J Therm Anal Calorim. 2016;124:993–1001.CrossRefGoogle Scholar
  30. 30.
    Atakol M, Atakol A, Yiğiter AÖ, Svoboda I, Atakol O. Investigation of energetic materials prepared by reactions of diamines with picryl chloride: synthesis, structure and thermal behaviour. J Therm Anal Calorim. 2017;127:1931–40.CrossRefGoogle Scholar
  31. 31.
    Dollimore D, Griffiths DL, Nichoison D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J Chem Soc. 1963;3:2617–23.CrossRefGoogle Scholar
  32. 32.
    Koga N, Suzuki Y, Tatsuoka T. Thermal dehydration of magnesium acetate tetra hydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012;116:14477–86.CrossRefPubMedGoogle Scholar
  33. 33.
    Kotru PN, Raina KK, Koul ML. The kinetics of solid-state decomposition of neodymium tartrate. Indian J Pure Appl Phys. 1987;25:220.Google Scholar
  34. 34.
    Schaube F, Koch L, Worner A, Steinha HM. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim Acta. 2012;538:9–20.CrossRefGoogle Scholar
  35. 35.
    Fatu D. Kinetics of gypsum dehydration. J Therm Anal Calorim. 2001;65:213–20.CrossRefGoogle Scholar
  36. 36.
    Modestov N, Poplankhin PV, Lyakhov NZ. Dehydration kinetics of lithium sulfate monohydrate single crystals. J Therm Anal Calorim. 2001;65:121–30.CrossRefGoogle Scholar
  37. 37.
    Halawy SA, Fouad NE, Mohamed MA, Zaki MI. Kinetic and thermodynamic parameters of the decomposition of chromium chromate in different gas atmospheres. J Therm Anal Calorim. 2001;65:167–76.CrossRefGoogle Scholar
  38. 38.
    Dalal PV, Saraf KB, Shimpi NG, Shah NR. Pyro and kinetic studies of barium oxalate crystals grown in agar gel. J Cryst Process Technol. 2012;2:156–60.CrossRefGoogle Scholar
  39. 39.
    Horowitz HH, Metzger G. New analysis of thermogravimetric traces, analytical chemistry. Anal Chem. 1963;35:1464–8.CrossRefGoogle Scholar
  40. 40.
    Freeman ES, Carroll B. The application of thermoanalytical decomposition of calcium oxalate mono-hydrate. J Phys Chem. 1958;62:394–7.CrossRefGoogle Scholar
  41. 41.
    Nakamoto K. Infrared spectra of inorganic and co-ordination compounds. 2nd ed. NewYork: Wiley; 1969. p. 245.Google Scholar
  42. 42.
    Xiao CJ, Jin CQ, Wang XH. Crystal structure of dense nanocrystalline BaTiO3 ceramics. Mater Chem Phys. 2008;111:2–3.CrossRefGoogle Scholar
  43. 43.
    Koga N, Sesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Sesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–28.Google Scholar
  44. 44.
    Koga N, Sesták J, Simon P. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113:1527–41.CrossRefGoogle Scholar
  45. 45.
    Bosewell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal. 1980;18:353–8.CrossRefGoogle Scholar
  46. 46.
    Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.CrossRefGoogle Scholar
  47. 47.
    Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.CrossRefGoogle Scholar
  48. 48.
    Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium per carbonate: role of the surface product layer. J Phys Chem A. 2013;117:1880–9.CrossRefGoogle Scholar
  49. 49.
    Wada T, Nakano M, Koga N. Multistep kinetic behaviour of the thermal decomposition of granular sodium per carbonate: hindrance effect of the outer surface layer. J Phys Chem A. 2015;119:9749–60.CrossRefGoogle Scholar
  50. 50.
    Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118:8059–70.CrossRefGoogle Scholar
  51. 51.
    Kitabayashi S, Koga N. Physico-geometrical mechanism and overall kinetics of thermally induced oxidative decomposition of tin(II) oxalate in air: formation process of micro structural tin(IV) oxide. J Phys Chem C. 2014;118:17847–61.CrossRefGoogle Scholar
  52. 52.
    Koga N, Goshi Y, Yamada S, Perez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes; co-precipitated zinc carbonates. J Therm Anal Calorim. 2013;111:1463–74.CrossRefGoogle Scholar
  53. 53.
    Koga N, Kasahara D, Kimura T. Aragonite crystal growth and solid-state aragonite-calcite transformation: a physico-geometrical relationship via thermal dehydration of included water. Cryst Growth Des. 2013;13:2238–46.CrossRefGoogle Scholar
  54. 54.
    Koga N, Yamada S, Kimura T. Thermal decomposition of silver carbonate: phenomenology and physico-geometrical kinetics. J Phys Chem C. 2013;117:326–36.CrossRefGoogle Scholar
  55. 55.
    Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51:3998–4007.CrossRefGoogle Scholar
  56. 56.
    Noda Y, Koga N. Phenomenological kinetics of the carbonation reaction of lithium hydroxide monohydrate: role of surface product layer and possible existence of a liquid phase. J Phys Chem C. 2014;118:5424–36.CrossRefGoogle Scholar
  57. 57.
    Nusrath K, Muraleedharan K. Effect of nano-transition metal oxides of Fe, Co and Ni and ferrites of Co and Ni on the multistage thermal decomposition of oxalates of Ce(III). J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7648-2.CrossRefGoogle Scholar
  58. 58.
    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar
  59. 59.
    Cai J, Liu R. Weibull mixture model for modelling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111:10681–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  61. 61.
    Barmak K. A commentary on: Reaction kinetics in processes of nucleation and growth. Met Mater Trans A. 2010;41:2711–75.CrossRefGoogle Scholar
  62. 62.
    Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79:271–81.CrossRefGoogle Scholar
  63. 63.
    Font R, Conesa JA, Molto J, Munoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrol. 2009;85:276–86.CrossRefGoogle Scholar
  64. 64.
    Lopez G, Aguado R, Olazar M, Arabiourrutia M, Bilbao J. Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag. 2009;29:2649–55.CrossRefPubMedGoogle Scholar
  65. 65.
    Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations