Brown HT

Physical, thermal and biophysical properties of the food azo dye
  • Marian Leulescu
  • Ion Pălărie
  • Anca Moanţă
  • Nicoleta Cioateră
  • Mariana Popescu
  • Emilian Morîntale
  • Marius Ciprian Văruţ
  • Petre RotaruEmail author


Thermal behavior of Brown HT food dye was studied in correlation with the physical and biological antioxidant properties. Brown HT’s structure has been determined by X-ray diffraction and SEM analysis. Brown HT has a triclinic crystalline structure (space group P1). Electronic transitions, the behavior of atomic bonds in molecules, fluorescent excitation of the compound have been identified by spectroscopy FTIR, UV–Vis, atomic fluorescence and Raman spectroscopy. Brown HT has two absorption bands, one of them has a maximum absorbance of 0.393 a.u. at a wavelength of 492.31 nm, and the other has a maximum absorbance of 0.144 a.u. at the wavelength of 628.88 nm and shows the laser fluorescence of all its elements. Optical properties were measured through refractive index measurements at different concentrations and temperatures. Relative electrical permittivity and electric susceptibility were calculated. pH and protons concentration of the Brown HT solutions were determined depending on the temperature. Thermal analysis measurements of Brown HT revealed thermal stability till 280 °C. Brown HT’s biological activity has been evidenced through its interaction with collagen and bovine serum albumin. Food dye’s toxicity on plants growth was determined through the treatment of wheat with different Brown HT solutions. Brown HT has moderate biological activity when interacting with the proteins and it presents phytotoxicity at wheat’s growth.


Azo dye Biophysical activity Brown food-coloring Physical properties Brown HT Thermal stability 



Funding was provided by University of Craiova.


  1. 1.
    EFSA Panel on Food Additives and Nutrient Sources (ANS). Scientific opinion on the re-evaluation of Brown HT (E 155) as a food additive. EFSA J. 2010;8(3):1536.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Moanta A. Organic chemistry and pollution. SITECH House. Craiova. 2009;23:78–86.Google Scholar
  4. 4.
    ***. Class Names and the International Numbering System for food additives CAC/GL 36–1989. Codex Alimentarius FAO/WHO. 2017.Google Scholar
  5. 5.
    Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. OJ L 354, 31.12.2008.Google Scholar
  6. 6.
    Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295, 12.11.2011.Google Scholar
  7. 7.
    EFSA (European Food Safety Authority), 2014. Refined exposure assessment for Brown HT (E 155). EFSA J. 2014;12(5):3719.Google Scholar
  8. 8.
    Rotaru A, Moanta A. Azoic dyes: from thermal properties to a wide range of applications. Chapter 4 in: advanced engineering materials. recent developments for medical, technological and industrial applications. Greifswald: Academica Greifswald; 2016.Google Scholar
  9. 9.
    Yamjala K, Nainar MS, Ramisetti NR. Methods for the analysis of azo dyes employed in food industry: a review. Food Chem. 2016;192:813–24.CrossRefGoogle Scholar
  10. 10.
    Hong M-N, Suh H-J, Lee O-H, Chun H-S, Lee C. Improved analytical method of synthetic food colour additive, Brown HT by high-performance liquid chromatography. J Int Sci Publ Agric Food. 2014;2:68.Google Scholar
  11. 11.
    Fioru L, Langfeld HW. Tarabasanu-Mihaila C. Coloranti azoici. Editura Tehnica. 1981.Google Scholar
  12. 12.
    Cioni F, Bartolucci G, Pieraccini G, Meloni S, Moneti G. Development of a solid phase microextraction method for detection of the use of banned azo dyes in coloured textiles and leather. Rapid Commun Mass Spectrom. 1999;13:1833–7.CrossRefGoogle Scholar
  13. 13.
    Rafii F, Hall JD, Cerniglia CE. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol. 1997;35:897–901.CrossRefGoogle Scholar
  14. 14.
    Fukuda M, Kodama K, Yamamoto H, Mito K. Evaluation of new organic pigments as laser-active media for solid-state dye laser. Dyes Pigments. 2004;63:115–25.CrossRefGoogle Scholar
  15. 15.
    Fragoso CT, Battisti R, Miranda C, de Jesus PC. Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. J Mol Catal A Chem. 2009;301(1–2):93–7.CrossRefGoogle Scholar
  16. 16.
    Rotaru A, Brătulescu G, Rotaru P. Thermal analysis of azoic dyes; Part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.CrossRefGoogle Scholar
  17. 17.
    Basu A, Kumar GS. Interaction of toxic azo dyes with heme protein: Biophysical insights into the binding aspect of the food additive amaranth with human hemoglobin. J Hazard Mater. 2015;289:204–9.CrossRefGoogle Scholar
  18. 18.
    Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.CrossRefGoogle Scholar
  19. 19.
    Rotaru A, Constantinescu C, Rotaru P, Moanţă A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin films deposition by matrix assisted pulsed laser evaporation of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.CrossRefGoogle Scholar
  20. 20.
    Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,20-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.CrossRefGoogle Scholar
  21. 21.
    Capitfin-Vallvey LF, Navas Iglesias N, de Orbe PI, Avidad CR. Simultaneous determination of tartrazine and sunset yellow in cosmetic products by first-derivative spectrophotometry. Microchim Acta. 1997;126(1–2):153–7.CrossRefGoogle Scholar
  22. 22.
    Shokrollahi A, Ahmadi S. Determination of trace amounts of Brown HT as food dye by a CPE: scanometry method. J Taibah Univ Sci. 2017;11:196–204.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester: Wiley; 2004.Google Scholar
  25. 25.
    Podstawka E, Swiatłowska M, Borowiec E, Proniewicz LM. Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies. J Raman Spectrosc. 2007;38:356–63.CrossRefGoogle Scholar
  26. 26.
    Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S. FTIR FT Raman spectra and molecular structural confirmation of isoniazid. Indian J Pure Appl Phys. 2009;47:12–8.Google Scholar
  27. 27.
    Lin-Vien D, Colthup NB, Fateley WB, Graselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. Boston: Academic Press; 1991.Google Scholar
  28. 28.
    Schrader B. Raman/infrared atlas of organic compounds. 2nd ed. Weinkeim: VCH-Verl.-Ges; 1989.Google Scholar
  29. 29.
    Hineno M. Infrared spectra and normal vibrations of β-d-glucopyranose. Carbohydr Res. 1977;56:219.CrossRefGoogle Scholar
  30. 30.
    Peica N. Vibrational spectroscopy and density functional theory calculations on biological molecules. Dissertation. Würzburg; 2006.Google Scholar
  31. 31.
    Moanta A, Ionescu C, Dragoi M, Tutunaru B, Rotaru P. A new azo-ester: 4-(phenyldiazenyl)phenyl benzene sulfonate: spectral, thermal, and electrochemical behavior and its antimicrobial activity. J Therm Anal Calorim. 2015;120:1151–61.CrossRefGoogle Scholar
  32. 32.
    Rotaru P, Scorei R, Hărăbor A, Dumitru MD. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506:8–13.CrossRefGoogle Scholar
  33. 33.
    Roisinel T, Rodriguez-Carvajal J. A windows tool for powder diffraction patterns analysis. In: Delhez R, Mittemeijer EJ, editors. Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7); 2000. pp. 118–123.Google Scholar
  34. 34.
  35. 35.
  36. 36.
    Peica N, Pavel I, Pânzaru SC, Rastogi VK, Kiefer W. Vibrational characterization of E102 food additive by Raman and surface-enhanced Raman spectroscopy and theoretical studies. J Raman Spectrosc. 2005;36:657–66.CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Yu L, Bulatov M, Bodyu V, Krachun S. Problems in physicochemical methods of analysis. Moscow: Mir Publishers; 1974.Google Scholar
  39. 39.
    Harabor A, Rotaru P, Scorei I, Harabor NA. Non-conventional hexagonal structure for boric acid. J Therm Anal Calorim. 2014;118:1375–84.CrossRefGoogle Scholar
  40. 40.
    Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigments. 2007;72(1):101–8.CrossRefGoogle Scholar
  41. 41.
    Dincalp H, Toker F, Durucasu J, Avcibasi N, Icli S. New thiophene-based azo ligands containing azo methine group in the main chain for the determination of copper(II) ions. Dyes Pigments. 2007;75(1):11–24.CrossRefGoogle Scholar
  42. 42.
    Chen Z, Wu Y, Gu D, Gan F. Nickel(II) and copper(II) complexes containing 2-(2-(5-substituted isoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione ligands: synthesis, spectral and thermal characterizations. Dyes Pigments. 2008;76(3):624–31.CrossRefGoogle Scholar
  43. 43.
    Rotaru A, Jurca B, Moanta A, Salageanu I, Segal E. Kinetic study of the thermal decomposition of some aromatic ortho-chlorinated azomonoethers. 1 Decomposition of 4-[(2-chlorobenzyl)oxi]-4’-triflouromethyl-azobenzene. Rev Roum Chim. 2006;51:373–8.Google Scholar
  44. 44.
    Moanta A, Samide A, Rotaru P, Ionescu C, Tutunaru B. Synthesis and characterization of novel furoate azodye using spectral and thermal methods of analysis. J Therm Anal Calorim. 2015;119:1039–45.CrossRefGoogle Scholar
  45. 45.
    Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.CrossRefGoogle Scholar
  46. 46.
    Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP 2.0 software. J Therm Anal Calorim. 2016;126:919–32.CrossRefGoogle Scholar
  47. 47.
    Rotaru A, Gosa M, Segal E. Isoconversional liniar integral kinetics of the non-isothermal evaporation of 4-[(4-chlorobenzyl)oxy]-4’-trifluoromethyl-azobenzene. Stud Univ Babes Bolyai Chem. 2011;54:185–92.Google Scholar
  48. 48.
    Rotaru A, Moanta A, Salageanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87:395–400.CrossRefGoogle Scholar
  49. 49.
    Rotaru A, Kropidlowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92:233–8.CrossRefGoogle Scholar
  50. 50.
    Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–1666.CrossRefGoogle Scholar
  51. 51.
    Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl) diazenyl)phenol in air flow. J Therm Anal Calorim. 2003;97:485–91.CrossRefGoogle Scholar
  52. 52.
    Badea M, Emandi A, Marinescu D, Cristurean E, Olar R, Braileanu A, Budrugeac P, Segal E. Thermal stability of some azo-derivatives and their complexes: 1-(2-benzothiazolyl)-3-methyl-4-azo-pyrazil-5-one derivatives and their Cu(II) complexes. J Therm Anal Calorim. 2003;72(2):525–31.CrossRefGoogle Scholar
  53. 53.
    Wang S, Shen S, Xu H. Synthesis, spectroscopic and thermal properties of a series of azo metal chelate dyes. Dyes Pigments. 2000;44(3):195–8.CrossRefGoogle Scholar
  54. 54.
    Qiu J, Tang B, Ju B, Xu Y, Zhang S. Stable diazonium salts of weakly basic amines: convenient reagents for synthesis of disperse azo dyes. Dyes Pigments. 2017;136:63–9.CrossRefGoogle Scholar
  55. 55.
    Nejati K, Rezvani Z, Seyedahmadian M. The synthesis, characterization, thermal and optical properties of copper, nickel, and vanadyl complexes derived from azo dyes. Dyes Pigments. 2009;83(3):304–11.CrossRefGoogle Scholar
  56. 56.
    Suzuki Y, Horie M, Okamoto Y, Kurose Y, Maeda S. Thermal and optical properties of metal azo dyes for digital video disc-recordable discs. Jpn J Appl Phys. 1998;37(1):2084.CrossRefGoogle Scholar
  57. 57.
    El-Sonbati AZ, Diab MA, El-Bindary AA, Shoair AF, Hussein MA, El-Boz RA. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes. J Mol Struct. 2017;1141:186–203.CrossRefGoogle Scholar
  58. 58.
    Mallikarjuna NM, Keshavayya J, Maliyappa MR, Shoukat Ali RA, Venkatesh T. Synthesis, characterization, thermal and biological evaluation of Cu(II), Co(II) and Ni(II) complexes of azo dye ligand containing sulfamethaxazole moiety. J Mol Struct. 2018;1165:28–36.CrossRefGoogle Scholar
  59. 59.
    Bal S, Connolly JD. Synthesis, characterization, thermal and catalytic properties of a novel carbazole derived azo ligand and its metal complexes. Arab. J. Chem. 2017;10(6):761–8.CrossRefGoogle Scholar
  60. 60.
    Vlase T, Vlase G, Modra D, Doca N. Thermal behaviour of some industrial and food dyes. J Therm Anal Calorim. 2007;80:389–93.CrossRefGoogle Scholar
  61. 61.
    Moneghini M, De Zordi N, Solinas D, Macchiavelli S, Princivalle F. Characterization of solid dispersions of itraconazole and vitamin E TPGS prepared by microwave technology. Future Med Chem. 2010;2(2):237–46.CrossRefGoogle Scholar
  62. 62.
    Constantinescu C, Rotaru A, Nedelcea A, Dinescu M. Thermal behavior and matrix-assisted pulsed laser evaporation deposition of functional polymeric materials thin films with potential use in optoelectronics. Mater Sci Semicond Proc. 2015;30:242–9.CrossRefGoogle Scholar
  63. 63.
    Zhoua X, Xianga X. Effect of different plants on azo-dye wastewater biodecolorization. ISEST Proc Environ Sci. 2013;18:540–6.CrossRefGoogle Scholar
  64. 64.
    Muhammad S, Saeed G, Sayeed SA, Nassimunnisa, Ashraf S, Batool F, Ali R, Naz S, Siddiqi R. Investigations of in vitro digestibility of proteins bound to food colors. J Pharm Nutr Sci. 2011;1:34–40.Google Scholar
  65. 65.
    Rawat D, Mishra V. Radhey Shyam Sharma. Detoxification of azo dyes in the context of environmental processes. Chemosphere. 2016;155:591–605.CrossRefGoogle Scholar
  66. 66.
    Isik O, Demir I, Yuceer A, Cinar O. Isotherm and kinetic modelling of azo dyes adsorption. Warri: EJENS; 2017.Google Scholar
  67. 67.
    Chung K-T, Stevens SE, Cerniglia CE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol. 2008;18(3):175–90.CrossRefGoogle Scholar
  68. 68.
    Pellegrini D, Corsi M, Bonanni M, Bianchini R, D’Ulivo A, Bramanti E. Study of the interaction between collagen and naturalized and commercial dyes by Fourier transform infrared spectroscopy and thermogravimetric analysis. Dye Pigments. 2015;116:65–73.CrossRefGoogle Scholar
  69. 69.
    Wen MG, Zhang XB, Tian JN, Ni SH, Bian HD, Huang YL, Liang H. Binding interaction of xanthoxylin with bovine serum albumin. J Solut Chem. 2009;38:391–401.CrossRefGoogle Scholar
  70. 70.
    Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem. 1927;73:627.Google Scholar
  71. 71.
    Singelton VR, Orthifer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999;299:152–78.CrossRefGoogle Scholar
  72. 72.
    Wojdyłoa A, Oszmiańskia J, Czemerysb R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–9.CrossRefGoogle Scholar
  73. 73.
    Büyüktuncel E, Porgali E, Çolak C. Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food Nutr Sci. 2014;5:1660–7.Google Scholar
  74. 74.
    Leulescu M, Rotaru A, Pălărie I, Moanţă A, Cioateră N, Popescu M, Morîntale E, Bubulică MV, Florian G, Hărăbor A, Rotaru P. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-coloring azo dye. J Therm Anal Calorim. 2018;134:209–31.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Marian Leulescu
    • 1
  • Ion Pălărie
    • 1
  • Anca Moanţă
    • 2
  • Nicoleta Cioateră
    • 2
  • Mariana Popescu
    • 3
  • Emilian Morîntale
    • 1
  • Marius Ciprian Văruţ
    • 3
  • Petre Rotaru
    • 1
    Email author
  1. 1.Department of Physics, Faculty of SciencesUniversity of CraiovaCraiovaRomania
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of CraiovaCraiovaRomania
  3. 3.Faculty of PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania

Personalised recommendations