Advertisement

Thermal behaviour of bambus[6]uril and its chloride caviplex

  • Renato Salviato Cicolani
  • Aldo Eloizo Job
  • Fernando Gustavo Tonin
  • Henrique Dias Correia
  • Grégoire Jean-François Demets
Article

Abstract

The present paper presents the thermal behaviour of methyl-bambus[6]uril in its anion-free and chlorine-included form. Our study was based on thermogravimetry associated to Fourier-transform infrared spectroscopy and differential scanning calorimetry. The compounds decompose after \(300\,^{\circ }\hbox {C}\) and both forms of this macrocycle, contain four hydration water molecules. The main decomposition products are \(\hbox {H}_2\hbox {O}\), \(\hbox {CO}_2\), \(\hbox {NH}_3\) and isocyanic acid as we could detect by FTIR spectroscopy. Finally, we verified that the caviplex loses its chloride ion after \(270\ ^{\circ }\hbox {C}\) and may produce the anion-free macrocyle upon heating.

Keywords

Methyl-bambus[6]uril Thermal behaviour Macrocycle Caviplex 

Notes

Acknowledgements

This work was financed by FAPESP proc. 2016-12666-1, 2017-19595-5 and CAPES, CNPq proc. 457264/2014-4, 134552/2015-6 and 176793/2017-5. We thank Bill Safadi and Prof. Koiti Araki from IQ-USP for elemental analyses.

Supplementary material

10973_2018_7755_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (pdf 1099 KB)

References

  1. 1.
    Svec J, Necas M, Sindelar V. Bambus[6]uril. Angew Chem Int Ed. 2010;49(13):2378.  https://doi.org/10.1002/anie.201000420.CrossRefGoogle Scholar
  2. 2.
    Svec J, Dusek M, Fejfarova K, Stacko P, Klán P, Kaifer AE, Li W, Hudeckova E, Sindelar V. Anion-free bambus[6]uril and its supramolecular properties. Chem Eur J. 2011;17(20):5605.  https://doi.org/10.1002/chem.201003683.CrossRefPubMedGoogle Scholar
  3. 3.
    Toman P, Makrlík E, Vaňura P. Theoretical study on the complexation of bambus[6]uril with the chloride, bromide, and iodide anions. Monatsh Chem. 2011;142(9):881.  https://doi.org/10.1007/s00706-011-0546-y.CrossRefGoogle Scholar
  4. 4.
    Toman P, Makrlík E, Vaňura P. Bambus[6]uril as a novel macrocyclic receptor for the cyanide anion. Chem Phys Lett. 2012;547:63.  https://doi.org/10.1016/j.cplett.2012.07.057.CrossRefGoogle Scholar
  5. 5.
    Toman P, Makrlík E, Vaňura P. Theoretical study on the complexation of bambus[6]uril with the cyanate and thiocyanate anions. Monatsh Chem. 2012;143(7):985.  https://doi.org/10.1007/s00706-012-0748-y.CrossRefGoogle Scholar
  6. 6.
    Toman P, Makrlík E, Vaňura P. Bambus[6]uril as a ditopic ion-pair molecular receptor for cs+ i-. Monatsh Chem. 2012;143(10):1365.  https://doi.org/10.1007/s00706-012-0806-5.CrossRefGoogle Scholar
  7. 7.
    Toman P, Makrlík E, Vaňura P. Theoretical study on the protonation of bambus[6]uril. Monatsh Chem. 2011;143(3):373.  https://doi.org/10.1007/s00706-011-0682-4.CrossRefGoogle Scholar
  8. 8.
    Cicolani R, Demets G. A família das bambus[n]urilas. Quim. Nova. 2018.  https://doi.org/10.21577/0100-4042.20170250 CrossRefGoogle Scholar
  9. 9.
    Fiala T, Sindelar V. Supramolecular complexes of bambusurils with dialkyl phosphates. Supramol Chem. 2016;28(9–10):810.  https://doi.org/10.1080/10610278.2016.1146278.CrossRefGoogle Scholar
  10. 10.
    Fiala T, Ludvíková L, Heger D, Švec J, Slanina T, Vetráková L, Babiak M, Nečas M, Kulhánek P, Klán P, Sindelar V. Bambusuril as a one-electron donor for photoinduced electron transfer to methyl viologen in mixed crystals. J Am Chem Soc. 2017;139(7):2597.  https://doi.org/10.1021/jacs.6b08589.CrossRefPubMedGoogle Scholar
  11. 11.
    Lang C, Mohite A, Deng X, Yang F, Dong Z, Xu J, Liu J, Keinan E, Reany O. Semithiobambus[6]uril is a transmembrane anion transporter. Chem Commun. 2017;53(54):7557.  https://doi.org/10.1039/c7cc04026a.CrossRefGoogle Scholar
  12. 12.
    Germain P, Letoffe J, Merlin M, Buschmann H. Thermal behaviour of hydrated and anhydrous cucurbituril—a dsc, tg and calorimetric study in temperature range from 100 to 800 k. Thermochim Acta. 1998;315:87.  https://doi.org/10.1016/S0040-6031(98)00252-4.CrossRefGoogle Scholar
  13. 13.
    de Lima SM, Gomez JA, Barros VP, Vertuan GdS, Assis MdD, Graeff CFO, Demets GJF. A new oxovanadium(iv)-cucurbit[6]uril complex: properties and potential for confined heterogeneous catalytic oxidation reactions. Polyhedron. 2010;29(15):3008.  https://doi.org/10.1016/j.poly.2010.08.001.CrossRefGoogle Scholar
  14. 14.
    Stucchi da Silva LF, Demets GJF, Taviot-Gueho C, Leroux F, Valim JB. Unusual incorporation of neutral and low water-soluble guest molecules into layered double hydroxides: the case of cucurbit [6 and 7]uril inclusion hosts. Chem Mater. 2011;23(6):1350.  https://doi.org/10.1021/cm102962g.CrossRefGoogle Scholar
  15. 15.
    Demets GJF. Cucurbiturilas. Quim Nova. 2007;30(5):1313.  https://doi.org/10.1590/s0100-40422007000500045.CrossRefGoogle Scholar
  16. 16.
    Silva FA, Huguenin F, de Lima SM, Demets GJF. Lithium ion electrochemical insertion in vanadium pentoxide/cucurbit[6]uril intercalates. Inorg Chem Front. 2014;1:495.  https://doi.org/10.1039/c4qi00069b.CrossRefGoogle Scholar
  17. 17.
    de Araújo Silva F, Cicolani RS, Lima G, Huguenin F, Demets GJF. Enhanced li charge storage in naphthalene diimide/vanadium pentoxide intercalates. RSC Adv. 2018;8(42):24029.  https://doi.org/10.1039/c8ra02970a.CrossRefGoogle Scholar
  18. 18.
    Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132(3):1601.  https://doi.org/10.1007/s10973-018-7160-8.CrossRefGoogle Scholar
  19. 19.
    El-Boraey HA, El-Din AAS, Sayed IE. New complexes with 19-membered pyridine-based macrocycle ligand. J Therm Anal Calorim. 2017;129(2):1243.  https://doi.org/10.1007/s10973-017-6169-8.CrossRefGoogle Scholar
  20. 20.
    Correia HD, Cicolani RS, Moral RF, Demets GJF. Easy synthesis of trans-4,5-dihydroxy-2-imidazolidinone and 2,4-dimethylglycoluril. Synthesis. 2016;48(02):210.  https://doi.org/10.1055/s-0035-1560831.CrossRefGoogle Scholar
  21. 21.
    Rothman L, Gordon I, Barbe A, Benner D, Bernath P, Birk M, Boudon V, Brown L, Campargue A, Champion JP, Chance K, Coudert L, Dana V, Devi V, Fally S, Flaud JM, Gamache R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W, Mandin JY, Massie S, Mikhailenko S, Miller C, Moazzen-Ahmadi N, Naumenko O, Nikitin A, Orphal J, Perevalov V, Perrin A, Predoi-Cross A, Rinsland C, Rotger M, Šimečková M, Smith M, Sung K, Tashkun S, Tennyson J, Toth R, Vandaele A, Auwera JV. The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer. 2009;110(9–10):533.  https://doi.org/10.1016/j.jqsrt.2009.02.013.CrossRefGoogle Scholar
  22. 22.
    Zheng W, Jewitt D, Kaiser RI. Infrared spectra of ammonia-water ices. Astrophys J Supp Ser. 2009;181(1):53.  https://doi.org/10.1088/0067-0049/181/1/53.CrossRefGoogle Scholar
  23. 23.
    Ahamad T, Alshehri SM. Thermal degradation and evolved gas analysis: a polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arab J Chem. 2014;7(6):1140.  https://doi.org/10.1016/j.arabjc.2013.04.013.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Renato Salviato Cicolani
    • 1
  • Aldo Eloizo Job
    • 2
  • Fernando Gustavo Tonin
    • 3
  • Henrique Dias Correia
    • 1
  • Grégoire Jean-François Demets
    • 1
  1. 1.Departamento de Química, F.F.C.L.R.PUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Faculdade de Ciências e Tecnologia de Presidente PrudenteUniversidade Estadual Paulista Júlio de Mesquita FilhoPresidente PrudenteBrazil
  3. 3.Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São PauloPirassunungaBrazil

Personalised recommendations