Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1079–1091 | Cite as

Using waste flexible polyvinyl chloride treated with DOP/calcium hydroxide for enriching the performance of oxidizing bitumen

  • A. A. RagabEmail author
  • M. M. Mohammedy
  • M. El-Shafie
Article

Abstract

Now it is possible to get environmentally friendly bituminous material with promising engineering properties by improving the oxidized bitumen which has limited uses in industrial applications because it is a very hard and brittle material using waste flexible, non-biodegradable polyvinyl chloride (WFPVC) which causes numerous environmental problems. In this research, oxidizing bitumen was blended with 2 mass%, 4 mass%, 6 mass%, and 8 mass% of WFPVC. Calcium hydroxide and dioctyl phthalate (DOP) additives added to PVC absorb chloride radical, so the release of chlorine as HCl is dramatically reduced by additives. Water, acid, and alkali resistance was tested. Rotten test (penetration, softening point, and ductility), physical properties (impact, hardness, and adhesive), mechanical properties [tensile strength (Ts) MPa, elongation at break (Eb) %, Young’s modulus MPa, and hardness], and dynamic modulus were measured for the all prepared samples. The results showed that the prepared materials have high improvement in the physical and chemical properties, thermal stability, as well as mechanical and dynamic properties, which confirms that the materials prepared can be used as paints because the modified samples have a very good water, dilute acid, dilute alkalis, and aliphatic hydrocarbons resistance, furthermore having a good resistance when exposed to oils and greases, alcohols, but having poor resistance when exposed to aromatic hydrocarbons, and polymer additives greatly improve the chemical resistance of the prepared oxidizing bitumen formulations, as compared to unmodified one.

Graphical abstract

Keywords

Waste Flexible polyvinyl chloride Treated Enriching Performance Oxidizing bitumen 

Notes

Acknowledgements

The authors greatly acknowledge the supports of Asphalt Laboratory, Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI).

References

  1. 1.
    Zamanizadeh HR, Shishesaz MR, Danaee I, Zaarei D. Investigation of the corrosion protection behavior of natural montmorillonite clay/bitumen nanocomposite coatings. Prog Org Coat. 2015;78:256–60.CrossRefGoogle Scholar
  2. 2.
    Read J, Whiteoak D. The Shell Bitumen Handbook. 5th ed. London: Thomas Telford Ltd.; 2003.Google Scholar
  3. 3.
    Benbouzid M, Hafsi S. Thermal and kinetic analyses of pure and oxidized bitumens. Fuel. 2008;87:1585–90.CrossRefGoogle Scholar
  4. 4.
    Jagtap SD, Tambe SP, Choudhari RN, Mallik BP. Mechanical and anticorrosive properties of non-toxic coal-tar epoxy alternative coating. Prog Org Coat. 2014;77(2):395–402.CrossRefGoogle Scholar
  5. 5.
    Shi H, Xu T, Jiang R. Combustion mechanism of four components separated from asphalt binder. Fuel. 2017;192:18–26.CrossRefGoogle Scholar
  6. 6.
    Shi H, Xu T, Zhou P, Jiang R. Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder. Constr Build Mater. 2017;136:515–23.CrossRefGoogle Scholar
  7. 7.
    Xiao Y, van de Ven MFC, Molenaar AAA, Wu SP. Possibility of using epoxy modified bitumen to replace tar containing binder for pavement antiskid surfaces. Constr Build Mater. 2013;48:59–66.CrossRefGoogle Scholar
  8. 8.
    Schad M, Zipffel O. Aspects of modern corrosion protective coating technology. In: Proceeding of 2nd pipeline technology conference, Hannover, Germany, 16–17 April 2007.Google Scholar
  9. 9.
    Shikaleska AV, Pavlovska FP, Cimmino S, Duraccio D, Silvestre C. Viscoelastic properties and morphological characteristics of polymer-modified bitumen blends. J Appl Polym Sci. 2010;118:1320–30.Google Scholar
  10. 10.
    Guidetti GP, Rigosi GL, Marzola R. The use of polypropylene in pipeline coatings. Prog Org Coat. 1996;27:79–85.CrossRefGoogle Scholar
  11. 11.
    Santos R, Agblevor FA. Catalytic pyrolysis of polyvinyl chloride as a viable way of waste management. Master of Science, Utah State University. 2016.Google Scholar
  12. 12.
    Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci. 2009;364:1985–98.  https://doi.org/10.1098/rstb.2008.0205.CrossRefGoogle Scholar
  13. 13.
    Kanters MJ, Van Nispen R, Louw R, Mulder P. Chlorine input and chlorophenol emission in the lab-scale combustion of municipal solid waste. Environ Sci Technol. 1996;30(7):2121–6.  https://doi.org/10.1021/es950579e.CrossRefGoogle Scholar
  14. 14.
    Yue J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: a review. Waste Manag. 2016;48:300–14.  https://doi.org/10.1016/j.wasman.2015.11.041 CrossRefGoogle Scholar
  15. 15.
    Thornton J. Environmental impacts of polyvinyl chloride (PVC) building materials. Washington, DC: Healthy Building Network; 2002.Google Scholar
  16. 16.
    Bansal S, Misra AK, Bajpai P. Evaluation of modified bituminous concrete mix developed using rubber and plastic waste materials. Int J Sustain Built Environ. 2017;6:442–8.CrossRefGoogle Scholar
  17. 17.
    Airey GD. Rheological evaluation of EVA polymer modified bitumens. Constr Build Mater. 2002;16(8):473–87.CrossRefGoogle Scholar
  18. 18.
    Konin A. Effect of plastic waste content on physico-mechanical properties of flexible pavements. Int J Civ Struct Eng. 2011;2(1):382.Google Scholar
  19. 19.
    Hussein IA, Iqbal MH, Al-Abdul-Wahab HI. Influence of Mw of LDPE and vinyl acetate content of EVA on the rheology of polymer modified asphalts. Rheol Acta. 2005;45(1):92–104.CrossRefGoogle Scholar
  20. 20.
    Saboo N, Kumar P. Optimum blending requirements for EVA modified binder. Transp Res Procedia. 2016;17:98–106.CrossRefGoogle Scholar
  21. 21.
    Jaksland C, Rasmussen E, Rohde T. A new technology for treatment of PVC waste. Waste Manag. 2000;20:463–7.CrossRefGoogle Scholar
  22. 22.
    Zheng X-G, Tang L-H, Zhang N, Gao Q-H, Zhang C-F, Zhu Z-B. Dehydrochlorination of PVC materials at high temperature. Energy Fuels. 2003;17(4):897.CrossRefGoogle Scholar
  23. 23.
    Appiah JK, Berko-Boateng VN, Tagbor TA. Use of waste plastic materials for road construction in Ghana. Case Stud Constr Mater. 2017;6:1–7.CrossRefGoogle Scholar
  24. 24.
    Read J, Whiteoak D. The shell bitumen handbook. 5th ed. London: Thomas Telford Publishing; 2003.Google Scholar
  25. 25.
    Kang Y, Wu Q, Jin R, Yu P, Cheng J. Rubber-like quasi-thermosetting polyetheramine-cured epoxy asphalt composites capable of being opened to traffic immediately. Sci Rep. 2016;6:18882.CrossRefGoogle Scholar
  26. 26.
    Menard KP. Dynamic mechanical analysis: a practical introduction. 2nd ed. Boca Raton: CRC Press; 2008.CrossRefGoogle Scholar
  27. 27.
    Walker BM. Handbook of thermoplastic elastomers. New York: Van Nonstrand Reinhold; 1979.Google Scholar
  28. 28.
    Zhang C, Xu T, Shi H, Wang L. Physicochemical and pyrolysis properties of SARA fractions separated from asphalt binder. J Therm Anal Calorim. 2015;122:241–9.CrossRefGoogle Scholar
  29. 29.
    Yin H, Jin H, Wang Y, Sun Z, Yuan H, Wang Z, Cheng R. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim. 2014;115:1073–80.CrossRefGoogle Scholar
  30. 30.
    Elkashef M, Williams RC, Cochran E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR). J Therm Anal Calorim. 2018;131:865–71.CrossRefGoogle Scholar
  31. 31.
    Kim S. Pyrolysis kinetics of waste PVC pipe. Waste Manag. 2001;21:609–16.CrossRefGoogle Scholar
  32. 32.
    Masson JF, Collins P, Robertson G, Woods JR, Margeson J. Thermodynamics, phase diagrams, and stability of bitumen-polymer blends. Energy Fuels. 2003;17(3):714–24.CrossRefGoogle Scholar
  33. 33.
    Ramana NA, Hainina MR, Abdul N, Hassana FN, Warida MN, Khairul M, Idhama RM, Bahru UJ. Effect of bio-oil from empty fruit bunch on penetration index of asphalt binder. Jurnal Teknologi (Sciences Engineering). 2015;77(23):13–6.Google Scholar
  34. 34.
    Motamedi M, Attar MM, Rostam M. Performance enhancement of the oxidized bitumen binder using epoxy resin. Prog Org Coat. 2017;102:178–85.CrossRefGoogle Scholar
  35. 35.
    Souaya ER, El-kholy SA, El-Rahman AMA, Elshafie M, Abo-Shanab ZL. Evaluation and application of surfactants synthesized from asphalt components. Egypt J Pet. 2012;21(1):45–54.CrossRefGoogle Scholar
  36. 36.
    El-Rahman AMMA, El-Shafie M, Mohammedy MM, Abo-Shana ZL. Enhancing the performance of blown asphalt binder using waste EVA copolymer (WEVA). Egypt J Pet. 2017.  https://doi.org/10.1016/j.ejpe.2017.08.002.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Asphalt Lab, Petroleum Applications DepartmentEgyptian Petroleum Research Institute (EPRI)CairoEgypt

Personalised recommendations