Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1705–1713 | Cite as

Crystallization kinetics and morphology of poly(lactic acid) with polysaccharide as nucleating agent

  • Paula Cristina Dartora
  • Mariane da Rosa Loureiro
  • Maria Madalena de Camargo Forte
Article
  • 65 Downloads

Abstract

An ever-increasing concern about environmental pollution has spearheaded research into alternative biodegradable polymers. Currently, poly(lactic acid) (PLA) is one of the most notable biodegradable polymers due to its superior properties and low production cost. Nucleating agents have been used to overcome slow PLA crystallization. The present work aims at investigating cashew gum (CG) as nucleating agent in PLA produced by casting process. The effect of the CG (1–10 mass%) on the PLA crystallization process was evaluated by thermal analysis and hot-stage optical microscopy. The relative degree of crystallinity, crystallization kinetic parameters under isothermal conditions, and crystallite morphology of pure PLA and PLACG samples were also investigated. The PLA crystallization rate increased with the CG content at a temperature ranging from 130 °C to 140 °C. An increase in the degree of crystallinity and a reduction in the crystallite size of the PLA were observed in the samples which contained 5 and 10 mass% of CG. Cashew gum proved to be an effective nucleating agent for PLA. Results show that cashew gum can be used as a natural nucleating agent for PLA when faster crystallization rate, better crystallite size control or higher degree of crystallinity are required.

Keywords

Poly(lactic acid) Cashew gum Nucleating agent Crystallization rate DSC 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Brazilian National Council for Scientific and Technological Development (CNPq) and the Brazilian Agricultural Research Corporation (EMBRAPA) for supplying the cashew gum.

References

  1. 1.
    Liu H, Zhang J. Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys. 2011;49:1051–83.CrossRefGoogle Scholar
  2. 2.
    Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM. PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab. 2014;107:139–49.CrossRefGoogle Scholar
  3. 3.
    Jiang X, Luo Y, Tian X, Huang D, Reddy N, Yang Y. Chemical structure of poly(lactic acid). In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly (lactic acid): synthesis, structures, properties, processing, and applications. New Jersey: Wiley; 2010. p. 69–80.Google Scholar
  4. 4.
    Saeidlou S, Huneault MA, Li H, Park CB. Poly (lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.CrossRefGoogle Scholar
  5. 5.
    Arrieta MP, Samper MD, López J, Jiménez A. Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ. 2014;22:460–70.CrossRefGoogle Scholar
  6. 6.
    Auras R, Singh SP, Singh J. Performance evaluation of PLA against existing PET and PS containers. J Test Eval. 2006;34:1–7.Google Scholar
  7. 7.
    Houichi H, Maazouz A, Elleuch B. Crystallization behavior and spherulitic morphology of poly(lactic acid) films induced by casting process. Polym Eng Sci. 2015;55:1881–8.CrossRefGoogle Scholar
  8. 8.
    Li L, Huang W, Wang B, Wei W, Gu Q, Chen P. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer. 2015;68:183–94.CrossRefGoogle Scholar
  9. 9.
    Tsujimoto T, Nishio S, Uyama H. Bio-based branched polymer bearing castor oil core as a nucleating agent for poly(l-lactic acid). J Polym Environ. 2015;23:559–65.CrossRefGoogle Scholar
  10. 10.
    Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J. 2014;56:77–91.CrossRefGoogle Scholar
  11. 11.
    Xu T, Zhang A, Zhao Y, Han Z, Xue L. Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym Test. 2015;45:101–6.CrossRefGoogle Scholar
  12. 12.
    Refaa Z, Boutaous M, Xin S, Siginer DA. Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-5961-1.CrossRefGoogle Scholar
  13. 13.
    Ahmed J, Arfat YA, Castro-Aguirre E, Auras R. Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5402-1.CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Qiu Z, Yang W. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). Compos Sci Technol. 2009;69:627–32.CrossRefGoogle Scholar
  15. 15.
    Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.CrossRefGoogle Scholar
  16. 16.
    Gupta A, Simmons W, Schueneman GT, Mintz EA. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid). J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5657-6.CrossRefGoogle Scholar
  17. 17.
    Joseph S, Deenadayalan E, Mahanwar PA. Studies on melt processable biocomposites of polylactic acid. J Polym Environ. 2015;  https://doi.org/10.1007/s10924-014-0668-5.CrossRefGoogle Scholar
  18. 18.
    Vidovic´ E, Faraguna F, Jukic´ A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J Therm Anal Calorim. 2017;  https://doi.org/10.1007/s10973-016-5750-x.CrossRefGoogle Scholar
  19. 19.
    De Paula RCM, Rodrigues JF. Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr Polym. 1995;26:177–81.CrossRefGoogle Scholar
  20. 20.
    Zhang K, Nagarajan V, Misra M, Mohanty AK. Supertoughened renewable PLA Reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces 2014; https://pubs.acs.org/doi/10.1021/am502337u.
  21. 21.
    Ramesan MT, Surya K. Studies on electrical, thermal and corrosion behaviour of cashew tree gum grafted poly(acrylamide). Polym Renew Resour. 2016;7:81–100.Google Scholar
  22. 22.
    Klein JM, de Lima VS, da Feira JMC, Brandalise RN, Forte MMC. Chemical modification of cashew gum with acrylamide using an ultrasound-assisted method. J Appl Polym Sci. 2016.  https://doi.org/10.1002/app.43634.CrossRefGoogle Scholar
  23. 23.
    Yu F, Liu T, Zhao X, Yu X, Lu A, Wang J. Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci. 2012.  https://doi.org/10.1002/app.36260.CrossRefGoogle Scholar
  24. 24.
    Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta. 2014;594:31–8.CrossRefGoogle Scholar
  25. 25.
    de Paula RCM, Heatley F, Budd PM. Characterization of Anacardium occidentale exudate polysaccharide. Polym Int. 1998;45:27–35.CrossRefGoogle Scholar
  26. 26.
    Ye Q, Huang Z, Hao Y, Wang J, Yang X, Fan X. Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5314-0.CrossRefGoogle Scholar
  27. 27.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.CrossRefGoogle Scholar
  28. 28.
    Wang B, Wang W, Wang H, Hu G. Isothermal crystallization kinetics and melting behavior of in situ compatibilized polyamide 6/Polyethylene-octene blends. J Polym Res. 2010;17:429–37.CrossRefGoogle Scholar
  29. 29.
    Cowie JMG. Polymers: chemistry and physics of modern materials. 2nd ed. Glasgow: Blackie Academic & Professional; 1991.Google Scholar
  30. 30.
    Rashmi BJ, Prashantha K, Lacrampe M-F, Krawczak P. Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym Lett. 2015;9:721–35.CrossRefGoogle Scholar
  31. 31.
    Ding WD, Raymond KM, Chu RKM, Mark LH, Park CB, Sain M. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J. 2015;71:231–47.CrossRefGoogle Scholar
  32. 32.
    Nofar M, Tabatabaei A, Park CB. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer. 2013;54:2382–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratory of Polymeric Materials (LaPol), School of EngineeringFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations