Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1307–1314 | Cite as

Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data

Part 3
  • Roman SvobodaEmail author
Article
  • 37 Downloads

Abstract

Theoretically, simulated kinetic data were used to evaluate the performance of the linear, cubic spline and Bezier mathematic interpolations (in comparison with the physically meaningful tangential area-proportional interpolation) in case of the complex kinetics involving two independent processes with different degrees of overlapping. The Bezier interpolation exhibited best performance; the linear interpolation performed significantly worse than the two other ones. In general, the data distortions caused by application of the mathematic interpolations do not significantly influence the model-free kinetic parameters—apparent activation energy and pre-exponential factor; errors below 2% occurred even for the most extremely distorted data. On the other hand, the integrated peak area and the model-based parameters such as kinetic exponents and the complexity ratio can be significantly influenced by the interpolations-caused data distortions, with the associated errors being in the order of tenths of percent. Nevertheless, the distortions associated with the choice of the thermokinetic interpolation were found to not affect the thermal stability predictions for the complex kinetic processes; only the precise predictions based on the mid-range degrees of conversion (e.g., controlled preparation of glass–ceramics) can be significantly affected by the incorrect interpolation of the thermokinetic background.

Keywords

Baseline Data distortion Kinetic analysis Complex processes Kinetic prediction 

Notes

Acknowledgements

This work has been supported by the Czech Science Foundation under Project No. 17-11753S.

References

  1. 1.
    Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.Google Scholar
  2. 2.
    Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.Google Scholar
  3. 3.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  4. 4.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881.CrossRefGoogle Scholar
  5. 5.
    Takhor RL. In: Hench LL, Freiman SW, editors. Advances in nucleation and crystallization of glasses. Columbus: Amer. Ceram. Soc.; 1971. p. 166–72.Google Scholar
  6. 6.
    Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.CrossRefGoogle Scholar
  7. 7.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  8. 8.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  9. 9.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  10. 10.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand Part A. 1966;70:4.Google Scholar
  11. 11.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  12. 12.
    Vyazovkin S. Evaluation of the activation energy of thermally stimulated solidstate reactions under an arbitrary variation of the temperature. J Comput Chem. 1997;18:393–402.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar
  14. 14.
    Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.CrossRefGoogle Scholar
  15. 15.
    Malek J. The kinetic-analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  16. 16.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  17. 17.
    Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.CrossRefGoogle Scholar
  18. 18.
    Kitabayashi S, Koga N. Thermal decomposition of tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119:16188–99.CrossRefGoogle Scholar
  19. 19.
    Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  22. 22.
    Svoboda R. Linear baseline interpolation for single-process DSC data—Yes or no? Thermochim Acta. 2017;655:242–50.CrossRefGoogle Scholar
  23. 23.
    Svoboda R, Málek J. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data, part 1. J Therm Anal Calorim. 2016;124:1717–25.CrossRefGoogle Scholar
  24. 24.
    Svoboda R. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data, part 2. J Therm Anal Calorim. 2018;131:1889–97.CrossRefGoogle Scholar
  25. 25.
    Šesták J, Hubík P, Mareš JJ. Hot topics in thermal analysis and calorimetry, vol. 11. Berlin: Springer; 2017.Google Scholar
  26. 26.
    Schoenberg IJ. Contributions to the problem of approximation of equidistant data by analytic functions. Part A: on the problem of smoothing of graduation. A first class of analytic approximation formulae. Quart Appl Math. 1946;4:45–99.CrossRefGoogle Scholar
  27. 27.
    Höhne G, Hemminger W, Flammersheim HJ. Differential scanning calorimetry. Berlin: Springer; 2003.CrossRefGoogle Scholar
  28. 28.
    Nowicki L, Siuta D, Godala M. Determination of the chemical reaction kinetics using isothermal reaction calorimetry supported by measurements of the gas production rate: a case study on the decomposition of formic acid in the heterogeneous Fenton reaction. Thermochim Acta. 2017;653:62–70.CrossRefGoogle Scholar
  29. 29.
    Catauro M, Dell’Era A, Ciprioti SV. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2–CaO–P2O5 gel and ceramic materials. Thermochim Acta. 2016;625:20–7.CrossRefGoogle Scholar
  30. 30.
    Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4 center dot 2H(2)O. Thermochim Acta. 2015;610:29–36.CrossRefGoogle Scholar
  31. 31.
    Grajales EJ, Alacron EA, Villa AL. Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis. Thermochim Acta. 2015;609:49–60.CrossRefGoogle Scholar
  32. 32.
    Begovic NN, Stojanovic NN, Ostojic SB, Radulovic AM, Blagojevic VA, Simonovic B, Minic DM. Thermally induced polymerization of binuclear [Ni-2(en)(2)(H2O)(6)(pyr)]center dot 4H(2)O complex. Thermochim Acta. 2015;607:82–91.CrossRefGoogle Scholar
  33. 33.
    Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng. 1939;135:416–42.Google Scholar
  34. 34.
    Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  35. 35.
    Avrami M. Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.CrossRefGoogle Scholar
  36. 36.
    Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.CrossRefGoogle Scholar
  37. 37.
    Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex processes. J Therm Anal Calorim. 2013;111:1045–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations