Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1117–1133 | Cite as

Mapping of calorimetric response for the geopolymerisation of mechanically activated fly ash

  • Rakesh KumarEmail author
  • Sanjay Kumar
  • T. C. Alex
  • Rashmi Singla


The focus of this paper is on isothermal conduction calorimetric study of the geopolymerisation of mechanically activated fly ash. Mechanical activation was carried out in an eccentric vibratory mill due to its high efficiency. The samples used for calorimetry were characterised in terms of particle size distribution (by laser diffraction), morphology and chemical heterogeneity (by SEM–EDS) and structure (XRD and FTIR). The calorimetric response, rate of heat evolved (\(\dot{q}\)) with geopolymerisation time (t), was collected for 24 h. The 7 × 7 calorimetric maps were prepared using the data at seven reaction temperatures (TGP = 27, 32, 37, 42, 47, 53, 60 °C) for seven samples obtained after different duration of milling (tMA = 0, 5, 15, 30, 60, 90, 120 min). Comprehensive profiling of fly ash reactivity was done in terms of the maps for rate of heat evolved (\(\dot{q}\) vs. time), total heat evolved (Q vs. time), fraction reacted (α vs. time) and iso-conversion time (tα). Each of the mechanically activated samples behaved uniquely. A model-free approach based on ‘iso-conversional methods’ was deployed to analyse the kinetics of geopolymerisation. The analysis revealed that activation energy changes with fraction reacted and displays three regimes of dependence. The merit of the model-free analysis over traditionally used ‘model-based analysis’ is emphasised. Further, in the context of geopolymerisation, empirical parameters based on fraction reacted are used to delineate efficacy of mechanical activation vis-à-vis reaction temperature.


Geopolymer Fly ash Mechanical activation Isothermal conduction calorimetry Calorimetric maps Kinetics and mechanisms Iso-conversional methods Reactivity 



The authors are grateful to Dr. Indranil Chattoraj, Director, CSIR-National Metallurgical Laboratory (CSIR-NML) for his encouragement and permission to publish the paper. The fly ash used in the study was received from Grasim Cement, Rawan, Chhattisgarh (India). The authors sincerely acknowledge characterisation support received from Dr. S.K. Das (SEM–EDS), Dr. B Ravikumar (XRD) and Dr. Tirlochan Mishra (FTIR) (all from CSIR-NML).


The authors, individually or collectively, did not receive any funding to purse the work reported in this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42:2917–33.Google Scholar
  2. 2.
    Komnitsas K, Zaharaki D. Geopolymerisation: a review and prospects for the minerals industry. Miner Eng. 2007;20:1261–77.Google Scholar
  3. 3.
    Mcnulty E. Geopolymers: an environmental alternative to carbon dioxide producing ordinary Portland cement. 2009, p. 1–22. Accessed 24 Feb 2018.
  4. 4.
    Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal. 1989;35:429–41.Google Scholar
  5. 5.
    Davidovits J. 30 years of successes and failures in geopolymer applications, market trends and potential breakthroughs. In: Geopolymer 2002 international conference October 28–29, Melbourne, Australia. 2002, p. 1–16. Accessed 24 Feb 2018.
  6. 6.
    Davidovits J. Geopolymers based on natural and synthetic metakaolin—a critical review. Mater Today. 2016;1–13. Accessed 24 Feb 2018.
  7. 7.
    Davidovits J. Geopolymer chemistry and applications, 4th Ed. Institut Géopolymère, Saint-Quentin, France; 2015. Accessed 24 Feb 2018.
  8. 8.
    Wan Ibrahim WM, Hussin K, Al Bakri Abdullah MM, Abdul Kadir A, Binhussain MA. Review of fly ash-based geopolymer lightweight bricks. Appl Mech Mater. 2015;754–755:452–6.Google Scholar
  9. 9.
    Abdullah MM, Hussin K, Bnhussain M, Ismail KN, Ibrahim WMW. Mechanism and chemical reaction of fly ash geopolymer cement—a review. Int J Pure Appl Sci Technol. 2011;6:35–44.Google Scholar
  10. 10.
    Petermann JC, Saeed A. Alkali-activated geopolymers: a literature review. Air Force Res. Lab. 2010, p. 1–92. Accessed 24 Feb 2018.
  11. 11.
    MacKenzie KJD. What are these things called geopolymers? A physicochemical perspective. In: Bansal NP, Singh JP, Kriven WM, Schneider H, editors. Adv. Ceram. Matrix Compos. IX. American Ceramic Society; 2012. p. 173–86.Google Scholar
  12. 12.
    Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A. A review on alkaline activation: new analytical perspectives. Mater Constr. 2014;64:e022. Scholar
  13. 13.
    Van Deventer JSJ, Provis JL, Duxson P. Technical and commercial progress in the adoption of geopolymer cement. Miner Eng. 2012;29:89–104.Google Scholar
  14. 14.
    Lloyd N, Rangan BV. Geopolymer concrete: a review of development and opportunities. In: 35th conference OUR WORLD concrete structures 25–27 August 2010, Singapore. CI‐Premier PTE LTD, Singapore; 2010. p. 1–9.Google Scholar
  15. 15.
    Majidi B. Geopolymer technology, from fundamentals to advanced applications: a review. Mater Technol. 2009;24:79–87.Google Scholar
  16. 16.
    Provis JL, van Deventer J. Alkali activated materials state-of-the-art report, RILEM TC 224-AAM. Provis JL, van Deventer J, editors. Springer Netherlands; 2014.Google Scholar
  17. 17.
    Provis JL, Van Deventer JSJ. Geopolymers: Structure, processing, properties and industrial applications. Cambridge: Woodhead; 2009. p. 454.Google Scholar
  18. 18.
    Davidovits J. Geopolymer cement—a review. Institut Géopolymère; 2013. Accessed 24 Feb 2018.
  19. 19.
    Kumar R, Kumar S, Mehrotra SP. Towards sustainable solutions for fly ash through mechanical activation. Resour Conserv Recycl. 2007;52:157–79.Google Scholar
  20. 20.
    Kumar S, Kumar R, Mehrotra SP. Geopolymers, fly ash reactivity and mechanical activation. In: Kumar R, Srikanth S, Mehrotra S, editors. Front. Mechanochemistry Mech. Alloy. Jamshedpur: International Mechanochemistry Association and National Metallurgical Laboratory; 2011. p. 320–3.Google Scholar
  21. 21.
    Kumar S, Kumar R, Alex TC, Bandopadhyay A, Mehrotra SP. Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram Int. 2011;37:533–41.Google Scholar
  22. 22.
    Kalinkin AM, Kumar S, Gurevich BI, Alex TC, Kalinkina EV, Tyukavkina VV, et al. Geopolymerization behavior of Cu–Ni slag mechanically activated in air and in CO2 atmosphere. Int J Miner Process. 2012;112–113:101–6.Google Scholar
  23. 23.
    Kumar S, Sahoo DP, Nath SK, Alex TC, Kumar R. From grey waste to green geopolymer. Sci Cult. 2012;78:511–6.Google Scholar
  24. 24.
    Kumar S, Kumar R, Bandopadhyay A, Mehrotra SP. Geopolymer mediated solutions for the management of solid industrial wastes. In: Proceedings of international seminar mineral processing technology—2006, Chennai, India. 2006. p. 1024–30.Google Scholar
  25. 25.
    Lee WKW, van Deventer JSJ. Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf A Physicochem Eng Asp. 2002;211:49–66.Google Scholar
  26. 26.
    Kupaei RH, Alengaram UJ, Bin Jumaat MZ. A review on fly ash-based geopolymer concrete. Electron J Struct Eng. 2013;13:1–6.Google Scholar
  27. 27.
    Mucsi G, Molnár Z, Kumar S. Geopolymerisation of mechanically activated lignite and brown coal fly ash. Acta Phys Pol A. 2014;126:994–8.Google Scholar
  28. 28.
    Škvára F, Jílek T, Kopecký L. Geopolymer materials based on fly ash. Ceram Silik. 2005;49:195–204.Google Scholar
  29. 29.
    Panias D, Giannopoulou IP. Development of inorganic polymeric materials based on fired coal fly ash. Acta Metall Slovaca. 2006;12:321–7.Google Scholar
  30. 30.
    Lancellotti I, Ponzoni C, Barbieri L, Leonelli C. Waste materials in geopolymers. In: Vilarinho C, Castro F, editors. Waste Solut Treat Oppor. Boca Raton: CRC Press; 2015. p. 115–9.Google Scholar
  31. 31.
    Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, et al. A comprehensive review on the applications of coal fly ash. Earth Sci Rev. 2015;141:105–21.Google Scholar
  32. 32.
    Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci. 2010;36:327–63.Google Scholar
  33. 33.
    Blissett RS, Rowson NA. A review of the multi-component utilisation of coal fly ash. Fuel. 2012;97:1–23.Google Scholar
  34. 34.
    Thakur R, Ghosh S. Fly ash based geopolymer composites: manufacturing and engineering properties. LAP; 2011.Google Scholar
  35. 35.
    Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, et al. Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod. 2016;125:253–67.Google Scholar
  36. 36.
    Manjunatha GS, Radhakrishna, Venugopal K, Maruthi SV. Strength characteristics of open air cured geopolymer concrete. Trans Indian Ceram Soc. 2014;73:149–56.Google Scholar
  37. 37.
    Nath SK, Mukherjee S, Maitra S, Kumar S. Ambient and elevated temperature geopolymerization behaviour of class F fly ash. Trans Indian Ceram Soc. 2014;73:126–32.Google Scholar
  38. 38.
    Donatello S, Fernández-Jiménez A, Palomo A, Ciencias I De, Construcción D, Torroja E. Alkaline activation as a procedure for the transformation of fly ash into new materials. Part II—an assessment of mercury immobilisation. In: Proceedings of EUROCOALASH 2012 Conference Thessaloniki Greece, Sept 25–27 2012. 2011. p. 1–12.Google Scholar
  39. 39.
    Muduli SD, Sadangi JK, Nayak BD, Mishra BK. Effect of NaOH concentration in manufacture of geopolymer fly ash building brick. Greener J Phys Sci. 2013;3:2276–7851.Google Scholar
  40. 40.
    Palomo A, Fernández-Jiménez A. Alkaline activation, procedure for transforming fly ash into new materials. Part 1: applications. In: Proceedings of world coal ash conference 2011. p. 1–14.Google Scholar
  41. 41.
    Wan Q, Rao F, Song S, García RE, Estrella RM, Patiño CL, et al. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos. 2017;79:45–52.Google Scholar
  42. 42.
    Hajimohammadi A, Provis JL, van Deventer JSJ. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci. 2011;357:384–92.Google Scholar
  43. 43.
    Fernández-Jiménez A, Palomo A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 2005;86:207–14.Google Scholar
  44. 44.
    Provis JL, Hajimohammadi A, White CE, Bernal SA, Myers RJ, Winarski RP, et al. Nanostructural characterization of geopolymers by advanced beamline techniques. Cem Concr Compos. 2013;36:56–64.Google Scholar
  45. 45.
    Provis JL, van Deventer JSJ. Direct measurement of the kinetics of geopolymerisation by in situ energy dispersive X-ray diffractometry. J Mater Sci. 2007;42:2974–81.Google Scholar
  46. 46.
    Guo Z, Sha W. Quantification of precipitation hardening and evolution of precipitates. Mater Trans. 2002;43:1273–82. Scholar
  47. 47.
    Madai F, Kristaly F, Mucsi G. Microstructure, mineralogy and physical properties of ground fly ash based geopolymers. Ceram Silik. 2015;59:70–9.Google Scholar
  48. 48.
    Provis JL, Ismail I, Myers RJ, Rose V, Deventer JSJ Van. Characterising the structure and permeability of alkali-activated binders. In: International RILEM conference on advances in construction materials through science and engineering, 2011; p. 493–501.Google Scholar
  49. 49.
    Giannopoulou I, Panias D. Structure, design and applications of geopolymeric materials. 2007;5–15. Accessed 24 Feb 2018.
  50. 50.
    Bakri AM, Kamarudin H, Bnhussain M, Nizar IK, Rafiza AR, Zarina Y. Microstructure of different NaOH molarity of fly ash-based green polymeric cement. J Eng Technol Res. 2011;3:44–9.Google Scholar
  51. 51.
    Favier A, Habert G, Roussel N, d’Espinosede Lacaillerie JB. A multinuclear static NMR study of geopolymerisation. Cem Concr Res. 2015;75:104–9.Google Scholar
  52. 52.
    Jozić D, Zorica S, Tibljaš D, Bernstorff S. Insitu SAXS/WAXS study of the developing process of geopolymer structures. In: ECCM 2012—composites at Venice, proceedings of 15th European conference composites materials 2012.Google Scholar
  53. 53.
    Fernández-Jiménez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG. Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel. 2006;85:1960–9.Google Scholar
  54. 54.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir. 2007;23:9076–82.Google Scholar
  55. 55.
    Atiş CD, Görür EB, Karahan O, Bilim C, İlkentapar S, Luga E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr Build Mater. 2015;96:673–8.Google Scholar
  56. 56.
    Ryu GS, Lee YB, Koh KT, Chung YS. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater. 2013;47:409–18.Google Scholar
  57. 57.
    Görhan G, Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng. 2014;58:371–7.Google Scholar
  58. 58.
    Sarıdemir M. Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash. Constr Build Mater. 2010;24:1911–9.Google Scholar
  59. 59.
    Barbosa VFF, MacKenzie KJD. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull. 2003;38:319–31.Google Scholar
  60. 60.
    Temuujin J, van Riessen A, MacKenzie KJD. Preparation and characterisation of fly ash based geopolymer mortars. Constr Build Mater. 2010;24:1906–10.Google Scholar
  61. 61.
    Keleştemur O, Demirel B. Corrosion behavior of reinforcing steel embedded in concrete produced with finely ground pumice and silica fume. Constr Build Mater. 2010;24:1898–905.Google Scholar
  62. 62.
    Fernandez-Jimenez A, García-Lodeiro I, Palomo A. Durability of alkali-activated fly ash cementitious materials. J Mater Sci. 2007;42:3055–65.Google Scholar
  63. 63.
    Temuujin J, van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater. 2009;167:82–8.Google Scholar
  64. 64.
    Neupane K, Kidd P, Chalmers D, Baweja D, Shrestha R. Investigation on compressive strength development and drying shrinkage of ambient cured powder-activated geopolymer concretes. Aust J Civ Eng. 2016;14:72–83.Google Scholar
  65. 65.
    Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. Fly ash-based geopolymer concrete. Aust J Struct Eng. 2005;6:77–86.Google Scholar
  66. 66.
    Stutzman PE. Quantitative characterization of fly ash reactivity for use in geopolymer cements. In: 13th International congress on the chemistry of cement, Madrid; 2011. Accessed 24 Feb 2018.
  67. 67.
    Shekhovtsova J, Zhernovsky I, Kovtun M, Kozhukhova N, Zhernovskaya I, Kearsley E. Estimation of fly ash reactivity for use in alkali-activated cements—a step towards sustainable building material and waste utilization. J Clean Prod. 2018;178:22–33.Google Scholar
  68. 68.
    Fernández-Jimenez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel. 2006;85:625–34.Google Scholar
  69. 69.
    Bansal NP, Singh JP, Kriven WP. Advances in ceramic matrix composites XI. In: Proceedings of 107th annual meeting of the American Ceramic Society, Baltimore, Maryland, USA. American Ceramic Society; 2006. p. 265.Google Scholar
  70. 70.
    Cristelo N, Tavares P, Lucas E, Miranda T, Oliveira D. Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions—effect of mechanical activation, solution concentration and temperature. Compos Part B Eng. 2016;103:1–14.Google Scholar
  71. 71.
    Temuujin J, van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard Mater. 2009;164:634–9.Google Scholar
  72. 72.
    Temuujin J, Williams RP, van Riessen A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Technol. 2009;209:5276–80.Google Scholar
  73. 73.
    Mucsi G, Molnár Z, Rácz Á, Faitli J, Gombkötő I. High energy density milling as a tool for improving the properties of fly ash based geopolymer. In: IMPC 2014—27th international mineral processing congress 2014. p. 1–10.Google Scholar
  74. 74.
    Mucsi G, Kumar S, Csoke B, Kumar R, Molnár Z, Rácz Á, et al. Control of geopolymer properties by grinding of land filled fly ash. Int J Miner Process. 2015;143:50–8.Google Scholar
  75. 75.
    Kumar S, Kumar R, Alex TC, Bandopadhyay A, Mehrotra SP. Influence of reactivity of fly ash on geopolymerisation. Adv Appl Ceram. 2007;106:120–7.Google Scholar
  76. 76.
    Hela R, Orsakova D. The mechanical activation of fly ash. Proc Eng. 2013;65:87–93.Google Scholar
  77. 77.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev. 2013;42:7571–637.Google Scholar
  78. 78.
    Boldyrev VV, Polov SV, Goldberg EL. Interrelation between fine grinding and mechanical activation. Int J Min Process. 1996;44–45:181–5.Google Scholar
  79. 79.
    Boldyrev VV. Mechanochemistry and mechanical activation of solids. Russ Chem Rev. 2006;75:177–89. Scholar
  80. 80.
    Juhasz AZ, Opoczky L. Mechanical activation of minerals by grinding: pulverizing and morphology of particles. New York: Ellis Horwood Limited; 1994.Google Scholar
  81. 81.
    Kumar R, Kumar S, Alex TC, Srikanth S, Mehrotra SP. Process innovations using mechanical activation of minerals and wastes. In: Mulas G, Delogu F, editors. Exp Theor Approaches to Mod. Mechanochemistry. Transworld Research Network, Chennai; 2010. p. 255–72.Google Scholar
  82. 82.
    Kumar R, Alex TC, Khan ZH, Mahapatra SP, Mehrotra SP. Mechanical activation of bauxite potential and prospects in the bayer process. In: Kvande H, editor. Light Metals 2005. TMS (The Minerals, Metals & Materials Society); 2005. p. 77–9.Google Scholar
  83. 83.
    Kumar R. Characterisation of minerals and ores: on the complementary nature of select techniques and beyond. Trans Indian Inst Met. 2016;70:253–77.Google Scholar
  84. 84.
    Kumar R, Alex TC, Jha MK, Khan ZH, Mahaptra SP, Mishra CR. Mechanochemistry and the Bayer process of alumina production. In: Tabereaux AT, editor. Light Metals 2004. TMS (The Minerals, Metals & Materials Society); 2004. p. 31–4.Google Scholar
  85. 85.
    Baláž P. Mechanochemistry in nanoscience and minerals engineering. Heidelberg: Springer; 2008.Google Scholar
  86. 86.
    Baláž P. Extractive metallurgy of activated minerals. New York: Elsevier; 2000.Google Scholar
  87. 87.
    Boldyrev VV. State of the art and challenges of mechanochemistry. In: Avvakumov EG, editor. Fundamentals of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies (Integrate Project, Issue 19). Novosibirsk: SB RAS Publishing House; 2009. Accessed 14 Sept 2018.
  88. 88.
    Alonso S, Palomo A. Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cem Concr Res. 2001;31:25–30.Google Scholar
  89. 89.
    Kumar S, Kumar R, Mehrotra SP. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci. 2010;45:607–15.Google Scholar
  90. 90.
    Zhang Z, Provis JL, Wang H, Bullen F, Reid A. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta. 2013;565:163–71.Google Scholar
  91. 91.
    Yao X, Zhang Z, Zhu H, Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim Acta. 2009;493:49–54.Google Scholar
  92. 92.
    Chithiraputhiran S, Neithalath N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater. 2013;45:233–42.Google Scholar
  93. 93.
    Granizo ML, Blanco-Varela MT, Palomo A. Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry. J Mater Sci. 2000;35:6309–15.Google Scholar
  94. 94.
    Nath SK, Mukherjee S, Maitra S, Kumar S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J Therm Anal Calorim. 2017;127:1953–61.Google Scholar
  95. 95.
    Sun Z, Vollpracht A. Isothermal calorimetry and in situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem Concr Res. 2018;103:110–22.Google Scholar
  96. 96.
    Chen C, Gong W, Lutze W, Pegg IL. Kinetics of fly ash geopolymerization. J Mater Sci. 2011;46:3073–83.Google Scholar
  97. 97.
    Škvára F, Kopecký L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater. 2009;168:711–20.Google Scholar
  98. 98.
    Najafi Kani E, Allahverdi A, Provis JL. Calorimetric study of geopolymer binders based on natural pozzolan. J Therm Anal Calorim. 2017;127:2181–90.Google Scholar
  99. 99.
    Khawam A, Flanagan DR. Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci. 2006;95:472–98.Google Scholar
  100. 100.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.Google Scholar
  101. 101.
    Mianowski A, Tomaszewicz M, Siudyga T, Radko T. Estimation of kinetic parameters based on finite time of reaction/process: thermogravimetric studies at isothermal and dynamic conditions. React Kinet Mech Catal. 2014;111:45–69.Google Scholar
  102. 102.
    Kumar R, Alex TC. Elucidation of the nature of structural heterogeneity during alkali leaching of non-activated and mechanically activated boehmite (γ-AlOOH). Metall Mater Trans B. 2015;46:1684–701.Google Scholar
  103. 103.
    Siyal AA, Azizli KA, Man Z, Ismail L, Khan MI. Geopolymerization kinetics of fly ash based geopolymers using JMAK model. Ceram Int. 2016;42:15575–84.Google Scholar
  104. 104.
    Poulesquen A, Frizon F, Lambertin D. Rheological behavior of alkali-activated metakaolin during geopolymerization. J Non Cryst Solids. 2011;357:3565–71.Google Scholar
  105. 105.
    Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sci. 2007;62:2309–17.Google Scholar
  106. 106.
    Rees CA. Mechanisms and kinetics of gel formation in geopolymers. PhD Thesis. The University of Melbourne; 2007.Google Scholar
  107. 107.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ. Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir. 2007;23:8170–9.Google Scholar
  108. 108.
    Kumar R, Kumar S, Badjena S, Mehrotra SP. Hydration of mechanically activated granulated blast furnace slag. Metall Mater Trans B. 2005;36:873–83.Google Scholar
  109. 109.
    Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta. 2012;539:23–33.Google Scholar
  110. 110.
    Gock E, Kurrer K-E. Eccentric vibratory mills—theory and practice. Powder Technol. 1999;105:302–10.Google Scholar
  111. 111.
    Staley WG, Brindley GW. Development of noncrystalline material in subsolidus reactions between silica and alumina. J Am Ceram Soc. 1969;52:616–9.Google Scholar
  112. 112.
    Risbud SH, Pask JA. SiO2–Al2O3 metastable phase equilibrium diagram without mullite. J Mater Sci. 1978;13:2449–54.Google Scholar
  113. 113.
    Risbud SH, Pask JA. Calculated thermodynamic data and metastable immiscibility in the system SiO2–Al2O3. J Am Ceram Soc. 1977;60:418–24.Google Scholar
  114. 114.
    Aksaf İA, Pask JA. Stable and metastable equilibria in the system SiO2–Al2O3. J Am Ceram Soc. 1975;58:507–12.Google Scholar
  115. 115.
    Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev. 2016;100:51–66.Google Scholar
  116. 116.
    Liz-Marzán LM, Giersig M. Low-dimensional systems : theory, preparation, and some applications. Boston: Kluwer Academic Publishers; 2003.Google Scholar
  117. 117.
    Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cem Based Mater. 2012;1:154–66.Google Scholar
  118. 118.
    Newman R. Some applications of infrared spectroscopy in the examination of painting materials. J Am Inst Conserv. 1980;19:42–62. Scholar
  119. 119.
    Srikanth S, Laxmi Devi V, Kumar R. Unfolding the complexities of mechanical activation assisted alkali leaching of zircon (ZrSiO4). Hydrometallurgy. 2015;157:159–70.Google Scholar
  120. 120.
    Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci. 2007;62:2318–29.Google Scholar
  121. 121.
    Phair JW, van Deventer JSJ, Smith JD. Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers. Ind Eng Chem Res. 2000;39:2925–34.Google Scholar
  122. 122.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf A Physicochem Eng Asp. 2008;318:97–105.Google Scholar
  123. 123.
    Braissant O, Bonkat G, Wirz D, Bachmann A. Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555:64–71.Google Scholar
  124. 124.
    Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.Google Scholar
  125. 125.
    Willson RJ, Beezer AE, Mitchell JC, Loh W. Determination of thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry: applications to long-term-reaction studies. J Phys Chem. 1995;99:7108–13.Google Scholar
  126. 126.
    Isothermal Microcalorimetry. Accessed 24 Feb 2018.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations