Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1103–1116 | Cite as

Investigation into the morphology, crystallization and melting behaviour of nylon 6,6/LCP blends

  • Sandeep Padmakar Jape
  • Vineeta Dinesh DeshpandeEmail author
Article

Abstract

The morphology, isothermal crystallization and melting behaviour of melt-mixed nylon 6,6/Vectra A950 liquid crystalline polymer (LCP) blends were investigated. The blends formed an immiscible system for all compositions, and the inclusion of LCP, especially at low content, accelerated the bulk crystallization rate of the matrix. The addition of LCP was also found to decrease the crystallite size in the growth direction. The effect of thermal history on the triple melting behaviour and the equilibrium melting temperature was discussed. The equilibrium meting temperature was determined to be lower in the blends. Lauritzen-Hoffman analysis on the crystallization data revealed an apparent regime I to II transition in all the samples. The blends showed lower fold surface energy and work of chain folding as compared to nylon 6,6.

Keywords

Nylon 6,6 Liquid crystalline polymers Blends Crystallization Melting behaviour 

Notes

Acknowledgements

The authors would like to express their gratitude to Dr Jain, and Dr. Satpute of PerkinElmer India for extending their DSC facility for initial testing. The authors would also like to thank Prof. Kalkar for his inputs in preparation of this paper. Sandeep Jape had received fellowship from University Grants Commission, Government of India, New Delhi under Special Assistance Program (SAP); contract grant number: F.4-1/2006(BSR)/5-65/2007. He had since then received financial assistance from TEQIP

Supplementary material

10973_2018_7733_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2719 kb)

References

  1. 1.
    Palmer RJ. Polyamides, plastics. Encyclopedia of polymer science and technology. New York: Wiley; 2002. p. 618–43.Google Scholar
  2. 2.
    Yang H. Polyamide fibers. In: Lewin M, editor. Handbook of fiber chemistry. 3rd ed. Boca Raton: CRC Press; 2006. p. 31–139.Google Scholar
  3. 3.
    Colclough ML, Baker R. Polymorphism in nylon 66. J Mater Sci. 1978;13(12):2531–40.Google Scholar
  4. 4.
    Vasanthan N, Murthy NS, Bray RG. Investigation of Brill transition in nylon 6 and Nylon 6,6 by infrared spectroscopy. Macromolecules. 1998;31(23):8433–5.Google Scholar
  5. 5.
    Ramesh C, Keller A. Eltink SJEA. Studies on the crystallization and melting of nylon-6,6: 1. The dependence of the Brill transition on the crystallization temperature. Polymer. 1994;35(12):2483–7.Google Scholar
  6. 6.
    Miura H, English AD. Segmental dynamics in nylon 66. Macromolecules. 1988;21(5):1543–4.Google Scholar
  7. 7.
    Lee SS, Phillips PJ. Melt crystallized polyamide 6.6 and its copolymers, Part I. Melting point—Lamellar thickness relations in the homopolymer. Eur Polym J. 2007;43(5):1933–51.Google Scholar
  8. 8.
    Lee SS, Phillips PJ. Melt crystallized polyamide 6.6 and its copolymers, Part II. Crystallization mechanisms in the homopolymer. Eur Polym J. 2007;43(5):1952–62.Google Scholar
  9. 9.
    Rhoades AM, Williams JL, Androsch R. Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim Acta. 2015;603:103–9.Google Scholar
  10. 10.
    Guan X. Crystallization of polyamide 66 copolymers at high supercoolings. Knoxville: University of Tennessee; 2004.Google Scholar
  11. 11.
    Dreyfuss P, Keller A. Chain folding in polyamides: a study on Nylons 66, 610, and 612 as crystallized from solution. J Macromol Sci Part B Phys. 1970;4(4):811–35.Google Scholar
  12. 12.
    Burmester AF, Dreyfuss P, Geil P, Keller A. On the annealing of polyamide crystal mats. J Polym Sci Part B Polym Lett. 1972;10(10):769–75.Google Scholar
  13. 13.
    Starkweather HW, Jones GA. Crystalline transitions in powders of nylon 66 crystallized from solution. J Polym Sci Polym Phys Ed. 1981;19(3):467–77.Google Scholar
  14. 14.
    Khoury F. The formation of negatively birefringent spherulites in polyhexamethylene adipamide (nylon 66). J Polym Sci. 1958;33(126):389–403.Google Scholar
  15. 15.
    Ramesh C, Keller A. Eltink SJEA. Studies on the crystallization and melting of nylon 66: 2. Crystallization behaviour and spherulitic morphology by optical microscopy. Polymer. 1994;35(24):5293–9.Google Scholar
  16. 16.
    Boasson EH, Woestenenk JM. Some aspects of the crystallization of nylon 66 (polyhexamethylene adipamide). J Polym Sci. 1957;24(105):57–61.Google Scholar
  17. 17.
    Magill JH. Formation of spherulites in polyamide melts: part III. Even-even polyamides. J Polym Sci A-2 Polym Phys. 1966;4(2):243–65.Google Scholar
  18. 18.
    Lovinger AJ. Crystallographic factors affecting the structure of polymeric spherulites. I. Morphology of directionally solidified polyamides. J Appl Phys. 1978;49(10):5003–13.Google Scholar
  19. 19.
    Lovinger AJ. Crystallographic factors affecting the structure of polymeric spherulites. II. X-ray diffraction analysis of directionally solidified polyamides and general conclusions. J Appl Phys. 1978;49(10):5014–28.Google Scholar
  20. 20.
    Hoffman JD, Davis GT, Lauritzen JI. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid state chemistry. NewYork: Plenum Press; 1976. p. 497–614.Google Scholar
  21. 21.
    Rwei S-P, Tseng Y-C, Chiu K-C, Chang S-M, Chen Y-M. The crystallization kinetics of Nylon 6/6T and Nylon 66/6T copolymers. Thermochim Acta. 2013;555:37–45.Google Scholar
  22. 22.
    Xie XL, Li RKY, Tjong SC, Tang CY. Flory-huggins interaction parameters of LCP/thermoplastic blends measured by DSC analysis. J Therm Anal Calorim. 2002;70(2):541–8.Google Scholar
  23. 23.
    Tjong SC, Li RKY, Xie X. Properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and polyamide 66 blends. Polym J. 2000;32(11):907–14.Google Scholar
  24. 24.
    Pisharath S, Wong S-C. Development of the morphology and crystalline state due to hybridization of reinforced toughened nylon containing a liquid-crystalline polymer. J Polym Sci Part B Polym Phys. 2003;41(6):549–59.Google Scholar
  25. 25.
    Campoy I, Gómez MA, Marco C. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester1. Polymer. 1998;39(25):6279–88.Google Scholar
  26. 26.
    Jape SP, Deshpande VD. Nonisothermal crystallization kinetics of nylon 66/LCP blends. Thermochim Acta. 2017;655:1–12.Google Scholar
  27. 27.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–12.Google Scholar
  28. 28.
    Avrami M. Kinetics of phase change. II transformation—time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.Google Scholar
  29. 29.
    Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9(2):177–84.Google Scholar
  30. 30.
    Kalkar AK, Deshpande VD, Kulkarni MJ. Isothermal crystallization kinetics of poly(phenylene sulfide)/TLCP composites. Polym Eng Sci. 2009;49(2):397–417.Google Scholar
  31. 31.
    Deshpande VD, Jape SP. Morphology, crystallization and melting behaviour of poly(trimethylene terephthalate)/thermotropic liquid crystalline polymer blends. J Therm Anal Calorim. 2017;128(3):1479–93.Google Scholar
  32. 32.
    Chisholm BJ, Zimmer JG. Isothermal crystallization kinetics of commercially important polyalkylene terephthalates. J Appl Polym Sci. 2000;76(8):1296–307.Google Scholar
  33. 33.
    Zhang R, Huang Y, Min M, Gao Y, Lu A, Lu Z. Nonisothermal crystallization of polyamide 66/poly(phenylene sulfide) blends. J Appl Polym Sci. 2008;107(4):2600–6.Google Scholar
  34. 34.
    Tjong SC. Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng R. 2003;41(1–2):1–60.Google Scholar
  35. 35.
    Bhattacharya SK, Tendolkar A, Misra A. Blends of a liquid crystalline polyester with polyethylene terephthalate. Mol Cryst Liq Cryst. 1987;153(1):501–13.Google Scholar
  36. 36.
    Pisitsak P, Magaraphan R. Influences of a liquid crystalline polymer, vectra A950, on crystallization kinetics and thermal stability of poly(trimethylene terephthalate). J Therm Anal Calorim. 2009;95(2):661–6.Google Scholar
  37. 37.
    Kalkar AK, Deshpande VD, Kulkarni MJ. Nonisothermal crystallization kinetics of poly (phenylene sulphide) in composites with a liquid crystalline polymer. J Polym Sci Part B Polym Phys. 2010;48(10):1070–100.Google Scholar
  38. 38.
    Binsbergen FL. Natural and artificial heterogeneous nucleation in polymer crystallization. J Polym Sci Polym Symp. 1977;59(1):11–29.Google Scholar
  39. 39.
    Bunn CW, Garner EV. The crystal structures of two polyamides (‘nylons’). Proc R Soc A. 1947;189:39–68.Google Scholar
  40. 40.
    Bell JP, Slade PE, Dumbleton JH. Multiple melting in nylon 66. J Polym Sci A-2 Polym Phys. 1968;6(10):1773–81.Google Scholar
  41. 41.
    Mitomo H, Nakazato K, Kuriyama I. Lamellar thickening behaviour of nylon-6,6 crystal by annealing. Polymer. 1978;19(12):1427–32.Google Scholar
  42. 42.
    Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate). Polymer. 2003;44(3):623–33.Google Scholar
  43. 43.
    Li Y, Zhu X, Tian G, Yan D, Zhou E. Multiple melting endotherms in melt-crystallized nylon 10,12. Polym Int. 2001;50(6):677–82.Google Scholar
  44. 44.
    Zhang G, Yan D. Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10–montmorillonite nanocomposites. J Appl Polym Sci. 2003;88(9):2181–8.Google Scholar
  45. 45.
    Medellin-Rodriguez FJ, Phillips PJ, Lin JS. Melting behavior of high-temperature polymers. Macromolecules. 1996;29(23):7491–501.Google Scholar
  46. 46.
    Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A. 1962;66A(1):13–28.Google Scholar
  47. 47.
    Alamo RG, Viers BD, Mandelkern L. A re-examination of the relation between the melting temperature and the crystallization temperature: linear polyethylene. Macromolecules. 1995;28(9):3205–13.Google Scholar
  48. 48.
    Pompe G, Häußler L, Winter W. Investigations of the equilibrium melting temperature in PBT and PC/PBT blends. J Polym Sci Part B Polym Phys. 1996;34(2):211–9.Google Scholar
  49. 49.
    Kalkar AK, Deshpande AA. Kinetics of isothermal and non-isothermal crystallization of poly(butylene terephthalate)/liquid crystalline polymer blends. Polym Eng Sci. 2001;41(9):1597–615.Google Scholar
  50. 50.
    Phillips PJ, Rensch GJ, Taylor KD. Crystallization studies of poly(ε-caprolactone).I. Morphology and kinetics. J Polym Sci Part B Polym Phys. 1987;25(8):1725–40.Google Scholar
  51. 51.
    Kim M-H, Phillips PJ, Lin JS. The equilibrium melting points of random ethylene-octene copolymers: a test of the Flory and Sanchez-Eby theories. J Polym Sci Part B Polym Phys. 2000;38(1):154–70.Google Scholar
  52. 52.
    Morra BS, Stein RS. Melting studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci Polym Phys Ed. 1982;20(12):2243–59.Google Scholar
  53. 53.
    Marand H, Hoffman JD. Determination of the fold surface free energy and the equilibrium melting temperature for.alpha.-phase poly(pivalolactone) crystals. Macromolecules. 1990;23(15):3682–7.Google Scholar
  54. 54.
    Bulakh N, Jog JP. Crystallization of poly(phenylenesulfide)/amorphous polyamide blends: dSC and microscopic studies. J Macromol Sci Part B. 1999;38(3):277–87.Google Scholar
  55. 55.
    Liu X, Wu Q, Berglund LA. Polymorphism in polyamide 66/clay nanocomposites. Polymer. 2002;43(18):4967–72.Google Scholar
  56. 56.
    Kaito A, Kyotani M, Nakayama K. Effects of annealing on the structure formation in a thermotropic liquid crystalline copolyester. Macromolecules. 1990;23(4):1035–40.Google Scholar
  57. 57.
    Sahoo NG, Das CK, Pandey KN, Mathur GN. Structural characterization of PBT-LCP blends. Mater Lett. 2002;56(3):194–9.Google Scholar
  58. 58.
    Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 2001;42(23):9423–31.Google Scholar
  59. 59.
    Dole M, Wunderlich B. Melting points and heats of fusion of polymers and copolymers. Die Makromol Chem. 1959;34(1):29–49.Google Scholar
  60. 60.
    Chan TW, Isayev AI. Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci. 1994;34(6):461–71.Google Scholar
  61. 61.
    Thomas DG, Staveley LAK. A study of the supercooling of drops of some molecular liquids. J Chem Soc. 1952:4569–77.Google Scholar
  62. 62.
    Qing-xin Z, Zhi-shen M. Melting crystallization behavior of nylon 66. Chin J Polym Sci. 2001;19(3):237–46.Google Scholar
  63. 63.
    Magill JH. Crystallization of polyamides II-nylon 6 and nylon 66. Polymer. 1965;6(7):367–71.Google Scholar
  64. 64.
    Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212.Google Scholar
  65. 65.
    Lee JH, Lee S-G, Choi K-Y, Liu J. Crystallization and melting behavior of nylon 66/poly(ether imide) blends. Polym J. 1998;30(7):531–7.Google Scholar
  66. 66.
    Lin S-Y, Chen E-C, Liu K-Y, Wu T-M. Isothermal crystallization behavior of polyamide 6,6/multiwalled carbon nanotube nanocomposites. Polym Eng Sci. 2009;49(12):2447–53.Google Scholar
  67. 67.
    Magill JH. Crystallization of polyamides II—nylon 6 and nylon 66. Polymer. 1965;6(7):367–71.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Sandeep Padmakar Jape
    • 1
  • Vineeta Dinesh Deshpande
    • 1
    Email author
  1. 1.Department of PhysicsInstitute of Chemical TechnologyMatungaIndia

Personalised recommendations