Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 3, pp 1753–1762 | Cite as

An experimental study of the nanofluid pool boiling on the aluminium surface

  • Ahmad NazariEmail author
  • Seyfolah Saedodin


Nucleate boiling due to use latent heat instead of sensible heat has an extra potential for dissipating high heat flux, but it needs to control critical heat flux. On the other hand, it is well known that nucleate boiling is strongly under the influence characteristics of surface. One of the methods to control critical heat flux is to change surface characteristics by nanofluid pool boiling. In this study, nanofluids which contain aluminium oxide nanoparticles with four different levels of concentration including 0.002, 0.01, 0.05 and 0.1 vol% were used for pool boiling tests at the atmospheric pressure. Tests showed that generally to add nanoparticles will cause the critical heat flux increase and at the certain concentrations about 0.01 vol%, critical heat flux has maximum enhancement about 19%. In this research, additionally, the effects of surface parameters such as wettability, roughness and thickness of deposited nanoparticles on the critical heat flux have been analysed.


Critical heat flux Pool boiling Nanofluids Wettability 

List of symbols

g (m s−2)

Acceleration of gravity

ρ (kg m−3)


ρl (kg m−3)

Liquid density

ρg (kg m−3)

Vapour density

σ (N m−1)

Surface tension

hfg (J kg−1)

Latent heat of evaporation

K (W m−1K−1)

Thermal conductivity

\(q^{\prime \prime }\) (W m−2)

Heat flux


Volume per cent

ΔTsat (K)

Wall superheat temperature

θ (deg)

Contact angle

CHF (W m−2)

Critical heat flux


Deionized water

Tw (K)

Surface temperature

\(\gamma_{\text{sl}}\) (N m−1)

Surface energy of solid–liquid

\(\gamma_{\text{sv}}\) (N m−1)

Surface energy of solid–liquid

T1 (K)

Bulk temperature of liquid

T2 (K)

Temperature of the first thermocouple in the conduction block

T3 (K)

Temperature of the second thermocouple in the conduction block

T4 (K)

Temperature of the third thermocouple in the conduction block


  1. 1.
    Kandlikar SG. Handbook of phase change: boiling and condensation. Abingdon: Taylor & Francis; 1999.Google Scholar
  2. 2.
    Kim DE, et al. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Thermal Fluid Sci. 2015;66:173–96.CrossRefGoogle Scholar
  3. 3.
    Nazari A, Saedodin S. Porous anodic alumina coating for optimisation of pool-boiling performance. Surf Eng. 2017;33(10):753–9. Scholar
  4. 4.
    Kim JS, et al. Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. Int J Heat Mass Transf. 2018;118:802–11.CrossRefGoogle Scholar
  5. 5.
    Kim J, et al. Effect of surface roughness on pool boiling heat transfer of water on a superhydrophilic aluminum surface. J Heat Transf. 2017;139(10):101501.CrossRefGoogle Scholar
  6. 6.
    Kim J, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf. 2016;101:992–1002.CrossRefGoogle Scholar
  7. 7.
    Shojaeian M, et al. Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation. Mater Res Exp. 2016;3(9):096102.CrossRefGoogle Scholar
  8. 8.
    Karimzadehkhouei M, et al. Stick and oscillatory behavior of bubbles due to TiO2 nanoparticle coating in subcooled pool boiling on a wire. Appl Phys Lett. 2017;111(6):061601.CrossRefGoogle Scholar
  9. 9.
    Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett. 2011;6(1):1–16.CrossRefGoogle Scholar
  10. 10.
    Ahn HS, Kim MH. A review on critical heat flux enhancement with nanofluids and surface modification. J Heat Transf. 2012;134(2):024001.CrossRefGoogle Scholar
  11. 11.
    Dikici B, Eno E, Compere M. Pool boiling enhancement with environmentally friendly surfactant additives. J Therm Anal Calorim. 2014;116(3):1387–94.CrossRefGoogle Scholar
  12. 12.
    Vafaei S, Borca-Tasciuc T. Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des. 2014;92(5):842–56.CrossRefGoogle Scholar
  13. 13.
    Phan HT, et al. Surface coating with nanofluids: the effects on pool boiling heat transfer. Nanoscale Microscale Thermophys Eng. 2010;14(4):229–44.CrossRefGoogle Scholar
  14. 14.
    Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng. 2015;84:45–63.CrossRefGoogle Scholar
  15. 15.
    Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130(3):2199–209.CrossRefGoogle Scholar
  16. 16.
    You S, Kim J, Kim K. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83(16):3374–6.CrossRefGoogle Scholar
  17. 17.
    Kim S, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50(19):4105–16.CrossRefGoogle Scholar
  18. 18.
    Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Transf. 2004;47(2):407–11.CrossRefGoogle Scholar
  19. 19.
    Kim HD, Kim J, Kim MH. Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int J Multiph Flow. 2007;33(7):691–706.CrossRefGoogle Scholar
  20. 20.
    Vazquez DM, Kumar R. Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling. Int Commun Heat Mass Transf. 2013;41:1–9.CrossRefGoogle Scholar
  21. 21.
    Sulaiman MZ, et al. Systematic measurements of heat transfer characteristics in saturated pool boiling of water-based nanofluids. Int J Heat Mass Transf. 2016;102:264–76.CrossRefGoogle Scholar
  22. 22.
    Vafaei S, Wen D. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. J Heat Transf. 2010;132(10):102404.CrossRefGoogle Scholar
  23. 23.
    Shahmoradi Z, Etesami N, Nasr M. Esfahany, Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun Heat Mass Transf. 2013;47:113–20.CrossRefGoogle Scholar
  24. 24.
    Ahn HS, Kim MH. The boiling phenomenon of alumina nanofluid near critical heat flux. Int J Heat Mass Transf. 2013;62:718–28.CrossRefGoogle Scholar
  25. 25.
    Lee JH, Lee T, Jeong YH. The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles. Int J Heat Mass Transf. 2013;61:432–8.CrossRefGoogle Scholar
  26. 26.
    Park SD, Moon SB, Bang IC. Effects of thickness of boiling-induced nanoparticle deposition on the saturation of critical heat flux enhancement. Int J Heat Mass Transf. 2014;78:506–14.CrossRefGoogle Scholar
  27. 27.
    Umesh V, Raja B. A study on nucleate boiling heat transfer characteristics of pentane and CuO-pentane nanofluid on smooth and milled surfaces. Exp Therm Fluid Sci. 2015;64:23–9.CrossRefGoogle Scholar
  28. 28.
    Kim JH, et al. Effect of aluminum oxide and reduced graphene oxide mixtures on critical heat flux enhancement. Int J Heat Mass Transf. 2018;116:858–70.CrossRefGoogle Scholar
  29. 29.
    Zhu D, Wu S, Wang N. Thermal physics and critical heat flux characteristics of Al2O3–H2O nanofluids. Heat Transf Eng. 2010;31(14):1213–9.CrossRefGoogle Scholar
  30. 30.
    Teng T-P, Hung Y-H. Estimation and experimental study of the density and specific heat for alumina nanofluid. J Exp Nanosci. 2014;9(7):707–18.CrossRefGoogle Scholar
  31. 31.
    Lee J-H, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51(11–12):2651–6.CrossRefGoogle Scholar
  32. 32.
    Karimzadehkhouei M, et al. The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. Int J Heat Mass Transf. 2017;109:157–66.CrossRefGoogle Scholar
  33. 33.
    Şeşen M, et al. Boiling heat transfer enhancement of magnetically actuated nanofluids. Appl Phys Lett. 2013;102(16):163107.CrossRefGoogle Scholar
  34. 34.
    Tanvir S, Qiao L. Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett. 2012;7(1):226.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen R-H, Phuoc TX, Martello D. Surface tension of evaporating nanofluid droplets. Int J Heat Mass Transf. 2011;54(11–12):2459–66.CrossRefGoogle Scholar
  36. 36.
    Kline SJ, McClintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75(1):3–8.Google Scholar
  37. 37.
    Holman JP. Experimental methods for engineers. New York: McGraw-Hill; 1966.Google Scholar
  38. 38.
    Kandlikar SG. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J Heat Transf. 2001;123(6):1071–9.CrossRefGoogle Scholar
  39. 39.
    Kim H, Kim M. Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids. Heat Mass Transf. 2009;45(7):991–8.CrossRefGoogle Scholar
  40. 40.
    Golubovic MN, et al. Nanofluids and critical heat flux, experimental and analytical study. Appl Therm Eng. 2009;29(7):1281–8.CrossRefGoogle Scholar
  41. 41.
    Liu Z-H, Xiong J-G, Bao R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiph Flow. 2007;33(12):1284–95.CrossRefGoogle Scholar
  42. 42.
    Liu Z-H, Liao L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transf. 2008;51(9):2593–602.CrossRefGoogle Scholar
  43. 43.
    Kwark SM, et al. Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf. 2010;53(5):972–81.CrossRefGoogle Scholar
  44. 44.
    Kiyomura I, et al. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int J Heat Mass Transf. 2017;106:666–74.CrossRefGoogle Scholar
  45. 45.
    Salimpour MR, Abdollahi A, Afrand M. An experimental study on deposited surfaces due to nanofluid pool boiling: comparison between rough and smooth surfaces. Exp Therm Fluid Sci. 2017;88:288–300.CrossRefGoogle Scholar
  46. 46.
    Liter SG, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment. Int J Heat Mass Transf. 2001;44(22):4287–311.CrossRefGoogle Scholar
  47. 47.
    Zhang F, Jacobi AM. Nanoparticle deposition by boiling on aluminum surfaces to enhance wettability. In: International Refrigeration and Air Conditioning Conference. Paper 1468. 2014.
  48. 48.
    Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466–7.CrossRefGoogle Scholar
  49. 49.
    O’Hanley H, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl Phys Lett. 2013;103(2):024102.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of Mechanical EngineeringSemnan UniversitySemnanIran

Personalised recommendations