Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 3233–3239 | Cite as

Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3

  • Shuang LiuEmail author
  • Li-Xian Sun
  • Lan-Tao LiuEmail author
  • Yan-Li Zhou
Article
  • 92 Downloads

Abstract

The molar heat capacities of one–three-dimensional metal–organic frameworks Al4(OH)2(OCH3)4(H2N-BDC)3 (CAU-1) were measured by temperature-modulated differential scanning calorimetry (TMDSC) over the temperature range from 213 to 393 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The fundamental thermodynamic parameters such as entropy and enthalpy relative to 298.15 K were calculated based on the experimentally determined molar heat capacities. The compound was characterized by elemental analysis, powder XRD, FT-IR spectrum. Moreover, the thermal stabilities and decomposition mechanisms of hydrated phase and dehydrated phase of CAU-1 were investigated by thermogravimetric spectrometer in the temperature range 298–1023 K.

Keywords

CAU-1 Molar heat capacity TG TMDSC 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21503129, 61571062, 21572126, 21675109) and Education Department of Henan Province (No. 15A150073).

References

  1. 1.
    Stock N, Biswas S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933–69.  https://doi.org/10.1021/cr200304e.Google Scholar
  2. 2.
    Hosny NM. Solvothermal synthesis, thermal and adsorption properties of metal–organic frameworks Zn and CoZn(DPB). J Therm Anal Calorim. 2015;122(1):89–95.  https://doi.org/10.1007/s10973-015-4721-y.Google Scholar
  3. 3.
    Reinsch H. “Green” synthesis of metal–organic frameworks. Eur J Inorg Chem. 2016;2016(27):4290–9.  https://doi.org/10.1002/ejic.201600286.Google Scholar
  4. 4.
    Hosny NM, Al-Hussaini AS, Nowesser N, Zoromba MS. Effect of inclusion of some transition metal ions and use of the doped polymer in synthesizing α-Fe2O3 nanoparticles via thermal decomposition rout. J Therm Anal Calorim. 2016;124(1):287–93.  https://doi.org/10.1007/s10973-015-5121-z.Google Scholar
  5. 5.
    He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks. Chem Soc Rev. 2014;43(16):5657–78.  https://doi.org/10.1039/C4CS00032C.Google Scholar
  6. 6.
    Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44(8):2421–54.  https://doi.org/10.1039/C4CS00437J.Google Scholar
  7. 7.
    Andirova D, Cogswell CF, Lei Y, Choi S. Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous Mesoporous Mater. 2016;219:276–305.  https://doi.org/10.1016/j.micromeso.2015.07.029.Google Scholar
  8. 8.
    Lin Y, Kong C, Zhang Q, Chen L. Metal–organic frameworks for carbon dioxide capture and methane storage. Adv Energy Mater. 2017;7(4):1601296.  https://doi.org/10.1002/aenm.201601296.Google Scholar
  9. 9.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev. 2014;43(16):6011–61.  https://doi.org/10.1039/C4CS00094C.Google Scholar
  10. 10.
    Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev. 2015;44(19):6804–49.  https://doi.org/10.1039/C4CS00395K.Google Scholar
  11. 11.
    Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43(16):5815–40.  https://doi.org/10.1039/C4CS00010B.Google Scholar
  12. 12.
    Qiu S, Xue M, Zhu G. metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev. 2014;43(16):6116–40.  https://doi.org/10.1039/C4CS00159A.Google Scholar
  13. 13.
    Banerjee D, Cairns AJ, Liu J, Motkuri RK, Nune SK, Fernandez CA, et al. Potential of metal–organic frameworks for separation of xenon and krypton. Acc Chem Res. 2015;48(2):211–9.  https://doi.org/10.1021/ar5003126.Google Scholar
  14. 14.
    He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–108.  https://doi.org/10.1021/acs.chemrev.5b00125.Google Scholar
  15. 15.
    Wunderlich B. The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J Therm Anal Calorim. 2004;78(1):7–31.  https://doi.org/10.1023/b:jtan.0000042150.03836.27.Google Scholar
  16. 16.
    Song LF, Jiao CL, Jiang CH, Zhang JA, Sun LX, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72.  https://doi.org/10.1007/s10973-010-0777-x.Google Scholar
  17. 17.
    Androsch R. Heat capacity measurements using temperature-modulated heat flux DSC with close control of the heater temperature. J Therm Anal Calorim. 2000;61(1):75–89.  https://doi.org/10.1023/a:1010104406353.Google Scholar
  18. 18.
    Wunderlich B, Jin YM, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93.  https://doi.org/10.1016/s0040-6031(94)85214-6.Google Scholar
  19. 19.
    Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402(1–2):91–8.Google Scholar
  20. 20.
    Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85(1):179–87.  https://doi.org/10.1007/s10973-005-7347-7.Google Scholar
  21. 21.
    Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Ferey G, et al. Al4(OH)2(OCH3)4(H2N-bdc)3·xH2O: a 12-connected porous metal–organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed. 2009;48(28):5163–6.  https://doi.org/10.1002/anie.200901409.Google Scholar
  22. 22.
    Schlegel M-C, Tobbens D, Svetogorov R, Kruger M, Stock N, Reinsch H, et al. Conformation-controlled hydrogen storage in the CAU-1 metal–organic framework. PCCP. 2016;18(42):29258–67.  https://doi.org/10.1039/c6cp05310f.Google Scholar
  23. 23.
    Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, et al. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2–N2 separation. Chem Commun. 2014;50(28):3699–701.  https://doi.org/10.1039/c4cc00068d.Google Scholar
  24. 24.
    Xie L, Liu D, Huang H, Yang Q, Zhong C. Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem Eng J. 2014;246:142–9.  https://doi.org/10.1016/j.cej.2014.02.070.Google Scholar
  25. 25.
    Hartmann M, Fischer M. Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 2012;164:38–43.  https://doi.org/10.1016/j.micromeso.2012.06.044.Google Scholar
  26. 26.
    Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22(6):1441–53.Google Scholar
  27. 27.
    Ginnings DC, Furukawa GT. Heat capacity standards for the range 14 to 1200 K. J Am Chem Soc. 1953;75(3):522–7.  https://doi.org/10.1021/ja01099a004.Google Scholar
  28. 28.
    Jiang C-H, Song L-F, Jiao C-L, Zhang J, Sun L-X, Xu F, et al. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103(3):1095–103.  https://doi.org/10.1007/s10973-010-1197-7.Google Scholar
  29. 29.
    Song L-F, Jiao C-L, Jiang C-H, Zhang J, Sun L-X, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72.  https://doi.org/10.1007/s10973-010-0777-x.Google Scholar
  30. 30.
    Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040–2.  https://doi.org/10.1126/science.1116275.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShangqiu Normal UniversityShangqiuPeople’s Republic of China
  2. 2.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations