Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 2, pp 1293–1298 | Cite as

Thermal decomposition of tricyclohexylidene triperoxide

  • Nabí Ferrer
  • Eduard Serra
  • Rosa Nomen
  • Julià SempereEmail author


The thermal decomposition of tricyclohexylidene triperoxide both pure and in 4% w/w solution of n-dodecane to yield mainly 16-hexadecanolide is studied applying the nonparametric kinetics method to a set of scanning calorimetry records. The apparent energies of activation obtained are 148.4 ± 0.8 and 90.9 ± 0.8 kJ mol−1, respectively. Combined kinetic models are proposed (first order + Šesták–Berggren) to describe the processes. The isothermal decomposition of the pure peroxide is studied, indicating that there is no appreciable reaction after 12 h at temperatures below 103 °C and that conversion is complete at temperatures over 137 °C.


Kinetic analysis NPK Autocatalytic reactions DSC Tricyclohexylidene triperoxide Cyclic macrolactones 

List of symbols


Matrix of experimental data of \(\dot{\alpha }\) as a function of α and T s−1


Function of temperature [1]


Function of conversion or reaction model [1]


Gas constant J K−1 mol−1


Temperature °C or K


NPK vector for g(α) [1]


NPK vector for f(T) [1]


Conversion [1]


Heating rate K min−1



Differential scanning calorimetry


Johnson, Mehl and Avrami model


Nonparametric kinetics


nth-order model (reaction order)


Šesták and Berggren model


Tricyclohexylidene triperoxide



One of the authors (N.F.) would acknowledge the economic support received from Medichem, S.A. Authors would give a special mention to Daibel de Armas, for supplying the raw material, and to Joaquim Martinez for its contribution.


  1. 1.
    Story PR, Denson DD, Bishop CE, Clark BC, Farine JC. A new general synthesis of macrocyclic compounds. J Am Chem Soc. 1968;90:817–8.CrossRefGoogle Scholar
  2. 2.
    Zang N, Qian X-M, Liu Z-Y, Shu C-M. Thermal hazard evaluation of cyclohexanone peroxide synthesis. J Therm Anal Calorim. 2016;124:1131–9.CrossRefGoogle Scholar
  3. 3.
    Duh Y-S, Kao C-S, Lee W-LW. Chemical kinetics on thermal decompositions of dicumyl peroxide studied by calorimetry. J Therm Anal Calorim. 2016;127:1089–98.CrossRefGoogle Scholar
  4. 4.
    Nomen R, Sempere J, Avilés K, Pieper F. Production of macrocyclic lactones through catalytic oxidation of cyclohexanone. J Therm Anal Calorim. 2003;72:991–1003.CrossRefGoogle Scholar
  5. 5.
    Sempere J, Nomen R, Serra E, De Armas D. Kinetic analysis of the thermal decomposition of tricyclohexylidene triperoxide using the NPK method | Aplicación del método NPK a la determinación de la cinética de descomposición del triperóxido de triciclohexilideno. Afinidad. 2005;62.Google Scholar
  6. 6.
    Harding MJC, Whalen DM. Synthesis of hexadecanolide. Ind Eng Chem Prod Res Dev. 1975;14(4):232–9.Google Scholar
  7. 7.
    Williams AS. The synthesis of macrocyclic musks. Synthesis (Stuttg). 1999;1999:1707–23.CrossRefGoogle Scholar
  8. 8.
    Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data. Thermochim Acta. 1998;316:37–45.CrossRefGoogle Scholar
  9. 9.
    Sempere J, Nomen R, Serra E, Sempere B. Non-parametric kinetic methods. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. 1st ed. Dordrecht: Springer; 2013. p. 351–69.Google Scholar
  10. 10.
    Sempere J, Nomen R, Serra R, Soravilla J. The NPK method an innovative approach for kinetic analysis of data from thermal analysis and calorimetry. Thermochim Acta. 2002;388:407–14.CrossRefGoogle Scholar
  11. 11.
    Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56:843–9.CrossRefGoogle Scholar
  12. 12.
    Ferrer N, Serra E, Sempere J, Nomen R. Non-parametric kinetic analysis of autocatalytic reactions. J Loss Prev Process Ind. 2017;49:357–66.CrossRefGoogle Scholar
  13. 13.
    Vyazovkin S. The truncated Šesták–Berggren equation is still the Šesták–Berggren equation, just truncated. J Therm Anal Calorim. 2017;127:1125–6.CrossRefGoogle Scholar
  14. 14.
    Svoboda R. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data: part 2. J Therm Anal Calorim. 2018;131:1889–97.CrossRefGoogle Scholar
  15. 15.
    Roduit B, Hartmann M, Folly P, Sarbach A, Dejeaifve A, Dobson R, et al. Kinetic analysis of solids of the quasi-autocatalytic decomposition type: SADT determination of low-temperature polymorph of AIBN. Thermochim Acta. 2018;665:119–26.CrossRefGoogle Scholar
  16. 16.
    Mathieu D, Alaime T, Beaufrez J. From theoretical energy barriers to decomposition temperatures of organic peroxides: Rational approach to thermal stability prediction. J Therm Anal Calorim. 2017;129:323–37.CrossRefGoogle Scholar
  17. 17.
    Wang B, Yi H, Xu K, Wang Q. Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models. J Therm Anal Calorim. 2017;128:399–406.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.IQS School of EngineeringUniversitat Ramon LlullBarcelonaSpain

Personalised recommendations