Advertisement

Application of response surface methodology in optimization of automotive air-conditioning performance operating with SiO2/PAG nanolubricant

  • A. A. M. Redhwan
  • W. H. Azmi
  • G. Najafi
  • M. Z. Sharif
  • N. N. M. Zawawi
Article

Abstract

The effect of compressor speed, initial refrigerant charge and volume concentrations of SiO2/PAG nanolubricant on the performance of automotive air-conditioning (AAC) system are investigated in this study. Response surface method (RSM) was used in designing the experimental work and is based on face composite design. The developed quadratic models from RSM were helpful to envisage the response parameters namely heat absorbs, compressor works, and coefficient of performance (COP) to identify the significant relations between the input factors and the responses. The results depicted that adding SiO2 nanoparticle into PAG lubricant will enhance the COP of AAC. Optimization of independent variables was performed using the desirability approach of the RSM with the goal of maximizing the heat absorb and COP, consequently, minimizing the compressor work. The results revealed that the optimal condition with a high desirability of 73.4% for the compressor speed of 900 rpm, refrigerant charge of 95 g and volume concentration of 0.07%. At this condition, the AAC system operated with 193.99, 23.28 kJ kg−1 and 8.27, respectively, for heat absorb, compressor work and COP. DoE based on RSM was capable of optimizing the significant parameters which affect AAC performance.

Keywords

Nanolubricant Heat absorb Compressor work COP Response surface method 

List of symbols

AAC

Automotive air-conditioning

ANOVA

Analysis of variance

CCD

Central composite design

COP

Coefficient of performance

EER

Energy efficiency ratio

FCD

Face-centered design

PAG

Polyalkylene glycol

QL

Heat absorb (kJ kg−1)

RAC

Resident air-conditioning

rpm

Revolution per minute

RSM

Response surface method

Win

Compressor work (kJ kg−1)

Greek symbols

ϕ

Volume concentration (%)

ρ

Density (kg m−1)

Notes

Acknowledgements

The authors are grateful to the Universiti Malaysia Pahang (www.ump.edu.my) for financial supports given under RDU160395 and PGRS170374. The authors also thank to the research team from Automotive Engineering Centre (EAC) and Advanced Automotive Liquids Laboratory (A2LL), who provided insight and expertise that greatly assisted in the present research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Di Battista D, Cipollone R. High efficiency air conditioning model based analysis for the automotive sector. Int J Refrig. 2016;64:108–22.  https://doi.org/10.1016/j.ijrefrig.2015.12.014.CrossRefGoogle Scholar
  2. 2.
    Redhwan AAM, Azmi WH, Sharif MZ, Mamat R. Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transf. 2016;76:285–93.  https://doi.org/10.1016/j.icheatmasstransfer.2016.06.007.CrossRefGoogle Scholar
  3. 3.
    Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—a review. Renew Sustain Energy Rev. 2017;69:415–28.  https://doi.org/10.1016/j.rser.2016.11.207.CrossRefGoogle Scholar
  4. 4.
    Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers Manag. 2011;52(1):733–7.CrossRefGoogle Scholar
  5. 5.
    Bi SS, Shi L, Zhang LL. Application of nanoparticles in domestic refrigerators. Appl Therm Eng. 2008;28(14):1834–43.CrossRefGoogle Scholar
  6. 6.
    Wang R, Wu Q, Wu Y. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants. Energy Build. 2010;42(11):2111–7.CrossRefGoogle Scholar
  7. 7.
    Kumar DS, Elansezhian RD. Experimental study on Al2O3-R134a nano refrigerant in refrigeration system. Int J Mod Eng Res. 2012;2(5):3927–9.Google Scholar
  8. 8.
    Subramani N, Prakash MJ. Experimental studies on a vapour compression system using nanorefrigerants. Int J Eng Sci Technol. 2011;3(9):95–102.Google Scholar
  9. 9.
    Nair V, Tailor PR, Parekh AD. Nanorefrigerants: a comprehensive review on its past, present and future. Int J Refrig. 2016;67:290–307.  https://doi.org/10.1016/j.ijrefrig.2016.01.011.CrossRefGoogle Scholar
  10. 10.
    Sabareesh RK, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigation. Int J Refrig. 2012;35(7):1989–96.CrossRefGoogle Scholar
  11. 11.
    Frey DD, Wang H. Adaptive one-factor-at-a-time experimentation and expected value of improvement. Technometrics. 2006;48(3):418–31.  https://doi.org/10.1198/004017006000000075.CrossRefGoogle Scholar
  12. 12.
    Pandian M, Sivapirakasam SP, Udayakumar M. Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Appl Energy. 2011;88(8):2663–76.  https://doi.org/10.1016/j.apenergy.2011.01.069.CrossRefGoogle Scholar
  13. 13.
    Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. 3rd ed. New Jersey: Wiley; 2016.Google Scholar
  14. 14.
    Karimi F, Rafiee S, Taheri-Garavand A, Karimi M. Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. J Taiwan Inst Chem Eng. 2012;43(1):29–39.  https://doi.org/10.1016/j.jtice.2011.04.005.CrossRefGoogle Scholar
  15. 15.
    Costa N, Garcia J. Using a multiple response optimization approach to optimize the coefficient of performance. Appl Therm Eng. 2016;96:137–43.  https://doi.org/10.1016/j.applthermaleng.2015.11.080.CrossRefGoogle Scholar
  16. 16.
    Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. Int J Refrig. 2017;75:204–16.CrossRefGoogle Scholar
  17. 17.
    Redhwan AAM, Azmi WH, Sharif MZ, Hagos FY, editors. Development of nanolubricant automotive air conditioning (AAC) test rig. MATEC web of conferences; 2016.Google Scholar
  18. 18.
    Matlock PL, Brown WL, Clinton NA. Polyalkylene glycols. New York: Chemical Industries-Marcel Dekker; 1999. p. 159–94.Google Scholar
  19. 19.
    Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1.Google Scholar
  20. 20.
    Redhwan AAM, Azmi WH, Sharif MZ, Zawawi NNM, editors. Thermal conductivity enhancement of Al2O3 and SiO2 nanolubricants for application in automotive air conditioning (AAC) system. MATEC web of conferences; 2016.Google Scholar
  21. 21.
    Sharif MZ, Azmi WH, Redhwan AAM, Mamat R. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. Int J Refrig. 2016.  https://doi.org/10.1016/j.ijrefrig.2016.06.025.CrossRefGoogle Scholar
  22. 22.
    Sharif MZ, Azmi WH, Redhwan AAM, Zawawi NMM, editors. Preparation and stability of silicone dioxide dispersed in polyalkylene glycol based nanolubricants. MATEC web of conferences; 2016.Google Scholar
  23. 23.
    Sharif MZ, Azmi WH, Redhwan AAM, Zawawi NNM, Mamat R. Improvement of nanofluid stability using 4-step UV–vis spectral absorbency analysis. J Mech Eng. 2017;4(2):233–47.Google Scholar
  24. 24.
    Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Zawawi NNM. Comparative study of thermo-physical properties of SiO2and Al2O3 nanoparticles dispersed in PAG lubricant. Appl Therm Eng. 2017;116:823–32.  https://doi.org/10.1016/j.applthermaleng.2017.01.108.CrossRefGoogle Scholar
  25. 25.
    Abdolbaqi MK, Sidik NAC, Aziz A, Mamat R, Azmi WH, Yazid MNAWM, et al. An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;77:22–32.  https://doi.org/10.1016/j.icheatmasstransfer.2016.07.007.CrossRefGoogle Scholar
  26. 26.
    Azmi W, Hamid KA, Mamat R, Sharma K, Mohamad M. Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl Therm Eng. 2016;106:1190–9.CrossRefGoogle Scholar
  27. 27.
    Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf. 2016;73:75–83.  https://doi.org/10.1016/j.icheatmasstransfer.2016.02.006.CrossRefGoogle Scholar
  28. 28.
    Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.CrossRefGoogle Scholar
  29. 29.
    Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M. Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng. 2016;109:761–74.CrossRefGoogle Scholar
  30. 30.
    Khoobbakht G, Najafi G, Karimi M, Akram A. Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Appl Therm Eng. 2016;99:1006–17.  https://doi.org/10.1016/j.applthermaleng.2015.12.143.CrossRefGoogle Scholar
  31. 31.
    Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol. 1980;12(4):214–9.CrossRefGoogle Scholar
  32. 32.
    Oh BR, Seo JW, Choi MH, Kim CH. Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology. Biotechnol Bioprocess Eng. 2008;13(6):666–70.CrossRefGoogle Scholar
  33. 33.
    Choi JM, Kim YC. The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube. Energy. 2002;27(4):391–404.CrossRefGoogle Scholar
  34. 34.
    Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53(21–22):4607–18.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.032.CrossRefGoogle Scholar
  35. 35.
    Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf. 2014;59:30–8.CrossRefGoogle Scholar
  36. 36.
    Brown WL. Polyalkylene glycols. CRC Handb Lubr Tribol. 1993;3:253–67.Google Scholar
  37. 37.
    Dow. Safety data sheet: UCON™ refrigeration lubricant 213. USA: The Dow Chemical Company. 2013. p. 1–11.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • A. A. M. Redhwan
    • 1
    • 3
  • W. H. Azmi
    • 1
    • 2
  • G. Najafi
    • 4
  • M. Z. Sharif
    • 1
  • N. N. M. Zawawi
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.Automotive Engineering Centre, Universiti Malaysia PahangPekanMalaysia
  3. 3.Faculty of Manufacturing Engineering TechnologyTATI University CollegeKemamanMalaysia
  4. 4.Tarbiat Modares UniversityTehranIran

Personalised recommendations