Advertisement

Kinetic study of the energetic reuse from torrefied sewage sludge and urban pruning blends

  • W. C. Nozela
  • C. F. V. Nozela
  • F. R. Silva
  • D. S. Dias
  • S. Almeida
  • C. A. Ribeiro
  • M. S. Crespi
Article

Abstract

Disposal of solid waste demands a high cost and causes significant environmental impacts. However, this waste can be converted into fuels by thermochemical processes due to the high content of the volatile materials and can be reused to produce energy. This study evaluated the production of renewable energy from solid waste such sewage sludge, urban pruning, and a blend composed of 50% urban pruning and 50% sewage sludge, after subjecting the samples to a torrefaction at 260 °C. The experiments were carried out using approximately 7 mg of each sample, under nitrogen atmosphere, at different heating rates (5, 10 and 20 °C min−1), and the temperature ranged from room temperature to 700 °C in simultaneous TG–DTA. For the determination of kinetic parameters, a local linear integral isoconversional method analogous to the Wanjun–Donghua method was used. From approximate and ultimate analysis, the higher heating values of the samples were determined. The results indicated that the blend presented a reduction in the moisture content (5.93–3.68%), 50% in volume and 31.8% in mass. Moreover, the sample became more hydrophobic because it incorporated 33.8% less humidity after torrefaction. The higher heating value increased from 20.36 to 32.15 MJ kg−1. The kinetic study showed that the average activation energy of the blend (138 kJ mol−1) was lower than the individual samples due to the synergism effect between them. The blend is converted to renewable fuel, minimizing environmental impacts and giving a noble destiny to the waste.

Keywords

Renewable energy Energetic reuse Waste Torrefaction 

Notes

Acknowledgements

The authors thank the Department of Analytical Chemistry from São Paulo State University and the Autonomous Water and Sewage Department of Araraquara/SP for kindly providing the facilities to carry out the analyses presented in this work.

Supplementary material

10973_2018_7534_MOESM1_ESM.tif (33 kb)
Supplementary material 1 (TIFF 33 kb)
10973_2018_7534_MOESM2_ESM.tif (32 kb)
Supplementary material 2 (TIFF 31 kb)
10973_2018_7534_MOESM3_ESM.tif (34 kb)
Supplementary material 3 (TIFF 33 kb)
10973_2018_7534_MOESM4_ESM.tif (31 kb)
Supplementary material 4 (TIFF 30 kb)
10973_2018_7534_MOESM5_ESM.tif (32 kb)
Supplementary material 5 (TIFF 32 kb)
10973_2018_7534_MOESM6_ESM.tif (31 kb)
Supplementary material 6 (TIFF 30 kb)
10973_2018_7534_MOESM7_ESM.tif (81 kb)
Supplementary material 7 (TIFF 81 kb)

References

  1. 1.
    Hirschl B. International renewable energy policy: between marginalization and initial approaches. Energy Policy. 2009;37:4407–36.CrossRefGoogle Scholar
  2. 2.
    Cruz G, Crnkovic P. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2016;123:1003–11.CrossRefGoogle Scholar
  3. 3.
    Jayaraman K, Gokalp I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manag. 2015;89:83–91.CrossRefGoogle Scholar
  4. 4.
    Associação brasileira de normas técnicas. NBR 10.004: resíduos sólidos: classificação. Rio de Janeiro. 2004;p. 71.Google Scholar
  5. 5.
    Brasil. Política Nacional de Resíduos Sólidos: Lei no. 12.305. In: Diário Oficial da União. 2010. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Accessed 9 Nov 2017.
  6. 6.
    Borowski HC, Silveira JL, Ebinuma CD, Ferreira ED. Análise de um modelo de co-geração a partir de resíduos sólidos urbanos. Revista Tecnologia. 2002;23:26–37.Google Scholar
  7. 7.
    Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag. 2003;44:2289–96.CrossRefGoogle Scholar
  8. 8.
    Brasil. Atlas de energia elétrica do Brasil. In: Agência Nacional de Energia Elétrica. 2008. www2.aneel.gov.br/arquivos/PDF/atlas3ed.pdf. Accessed 9 Nov 2017.
  9. 9.
    Unfccc. Clarifications of definition of biomass and consideration of changes in carbon pools due to a CDM project activity, In: EB-20. 2005. https://cdm.unfccc.int/EB/020/eb20repan08.pdf. Accessed 17 Nov 2017.
  10. 10.
    Torquato LDM, Almeida S, Oliveira JE, Crespi MS, Maintinguer SI. Thermal characterization of anaerobic sludges from wastewater treatment applied to biological generation of H2. J Therm Anal Calorim. 2016;127:1267–75.CrossRefGoogle Scholar
  11. 11.
    Torquato LDM, Pachiega R, Crespi MS, Nespeca MG, Oliveira JE, Maintinguer SI. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge. Waste Manag. 2016;59:181–93.CrossRefGoogle Scholar
  12. 12.
    Chernicharo CAL. Reatores anaeróbios. Rio de Janeiro: ABES; 1997. p. 221p.Google Scholar
  13. 13.
    Luduvice M. Processos de estabilização de lodos. In: Andreoli CV, Sperling MV, Fernandes F, editors. Lodo de esgoto: tratamento e disposição final. Príncipio do tratamento biológico de águas residuárias. UFMG: Belo Horizonte; 2001. p. 123–57.Google Scholar
  14. 14.
    Sperling MV, Andreoli CV. Introdução. In: Andreoli CV, Sperling MV, Fernandes F, editors. Lodo de esgoto: tratamento e disposição final. Príncipio do tratamento biológico de águas residuárias. UFMG: Belo Horizonte; 2001. p. 13–6.Google Scholar
  15. 15.
    Gao N, Li J, Qi B, Li A, Duan Y, Wang Z. Thermal analysis and products distribution of dried sewage sludge pyrolysis. J Anal Appl Pyrol. 2014;105:43–8.CrossRefGoogle Scholar
  16. 16.
    Pedroza MM, Vieira GEG, Sousa JF, Pickler AC, Leal ERM, Milhomem CC. Produção e tratamento de lodo de esgoto–uma revisão. Rev Liberato. 2010;16:89–100.Google Scholar
  17. 17.
    Ionescu G, Rada EC, Ragazzi M, Marculescu C, Badea A, Apostol T. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Convers Manag. 2013;76:1083–92.CrossRefGoogle Scholar
  18. 18.
    Kol MP, Hoi WK. Sustainable biomass production for energy in Malaysia. Biomass Bioenerg. 2003;25:517–29.CrossRefGoogle Scholar
  19. 19.
    Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour Technol. 2010;101:8859–67.CrossRefGoogle Scholar
  20. 20.
    Torquato LD, Braz CE, Ribeiro CA, Capela JM, Crespi MS. Kinetic study of the co-firing of bagasse-sludge blends. J Therm Anal Calorim. 2015;121:499–507.CrossRefGoogle Scholar
  21. 21.
    Nozela WC, Braz CEM, Almeida S, Ribeiro CA, Crespi MS. Mixture of biomass to energy reuse. J Therm Anal Calorim. 2017;131:765–9.CrossRefGoogle Scholar
  22. 22.
    Clausen LR, Houbak N, Elmegaard B. Techno-economic analysis of low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy. 2010;35:4831–42.CrossRefGoogle Scholar
  23. 23.
    Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH. Pretreatment of agriculture residues for co-gasification via torrefaction. J Anal Appl Pyrol. 2009;86:331–7.CrossRefGoogle Scholar
  24. 24.
    Van der Stelt MJ, Gerhausser H, Kie JH, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg. 2011;35:3748–62.Google Scholar
  25. 25.
    Santos LB, Striebeck MV, Crespi MS, Ribeiro CA. Characterization of biochar of pine pellet. J Therm Anal Calorim. 2015;122:21–32.CrossRefGoogle Scholar
  26. 26.
    Saleh SB. Torrefaction of biomass for power production. 2013. (Ph D Thesis) Department of Chemical and Biochemical Engineering. Technical University of Demark. Lyngby; 2013.Google Scholar
  27. 27.
    Associação brasileira de normas técnicas. NBR 10.007: amostragem de resíduos sólidos. Rio de Janeiro. 2004; p 21.Google Scholar
  28. 28.
    Dias DS, Crespi MS, Torquato LDM, Kobelnik M, Ribeiro CA. Torrefiel banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim. 2017;13:705–12.Google Scholar
  29. 29.
    Torquato LD, Crnkovic PM, Ribeiro CA, Crespi MS. New approach for proximate analysis by thermogravimetry using CO2 atmosphere: validation and application to different biomasses. J Therm Anal Calorim. 2017;128:1–14.CrossRefGoogle Scholar
  30. 30.
    Ozgur E, Miller SF, Miller BG, Kok MV. Thermal analysis of co-firing of oil shale and biomass fuels. Oil Shale. 2012;29:190–201.CrossRefGoogle Scholar
  31. 31.
    Chiang KY, Chien KL, Lu CH. Characterization and comparison of biomass produced from various sources: suggestions for selection of pretreatment technologies in biomass-to-energy. Appl Energy. 2012;100:164–74.CrossRefGoogle Scholar
  32. 32.
    Wanjun T, Donghua C. An integral method to determine variation in activation energy with the extent of conversion. Thermochim Acta. 2005;433(1–2):72–6.CrossRefGoogle Scholar
  33. 33.
    Basu P. Biomass characteristics. In: Basu P, editor. Biomass gasification and pyrolysis: practical design. Burlington: Academic Press; 2010. p. 27–63.CrossRefGoogle Scholar
  34. 34.
    Capana AS, Martins QV, Crespi MS, Ribeiro CA, Barud HS. Thermal behavior of residues (sludge) originated from Araraquara water and sewage treatment station. J Therm Anal Calorim. 2009;97:601–4.CrossRefGoogle Scholar
  35. 35.
    Ischiam M, Perazolli C, Maschior DAL, Campostrini R. Pyrolysis study of sewage by TG–MS and TG–GC–MS coupled analyses. J Therm Anal Calorim. 2007;87:567–74.CrossRefGoogle Scholar
  36. 36.
    Prasad TP, Kanungo SB, Ray H. Non isothermal kinetics: some merits and limitations. Thermochim Acta. 1992;203:503–14.CrossRefGoogle Scholar
  37. 37.
    Almeida S, Lima EM, Crespi MS, Ribeiro CA, Schalch V. Kinetic studies of urban solid residues and leachate from sanitary landfill. J Therm Anal Calorim. 2009;97:529–33.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Chemistry InstituteSao Paulo State UniversityAraraquaraBrazil

Personalised recommendations