Advertisement

Solidification behavior of indium droplets embedded in aluminum by differential fast scanning calorimetry

  • Mannan Wu
  • Quanliang Zhang
  • Bingge Zhao
  • Ling Zhang
  • Qijie Zhai
  • Yulai Gao
Article
  • 43 Downloads

Abstract

Indium droplets embedded in aluminum matrix were successfully prepared by melt spinning technique. The results showed that an amount of nano-sized indium droplets were embedded inside aluminum grains, while micro-sized indium droplets were distributed along aluminum grain boundaries. The nano-sized indium droplets exhibited an orientation relationship with the aluminum matrix of \((\bar{1}01)_{\text{In}} ||(\bar{1}1\bar{1})_{\text{Al}}\), \((\bar{1}10)_{\text{In}} ||(00\bar{2})_{\text{Al}}\) and \([111]_{\text{In}} ||[110]_{\text{Al}}\). The nucleation of indium droplets was catalyzed by the surrounding Al matrix on the {111}Al or {002}Al lattice planes. Employing differential scanning calorimetry and differential fast scanning calorimetry, it was found that the solidification of indium droplets consisted of three stages. Based on the classical nucleation theory, the solidification behavior of nano-sized In droplets was studied. The results displayed that the contact angle at larger undercooling was far greater than that in smaller undercooled melt, implying that the catalyzing effect of the matrix on the nucleation in larger undercooling could be depressed.

Keywords

Heterogeneous nucleation Solidification Nucleation Differential fast scanning calorimetry Melt-spun technique 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Numbers 51671123, 51171105 and 50971086), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant Number TP2014042), PR China.

References

  1. 1.
    Fan Z, Wang Y, Xia M, Arumuganathar S. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. Acta Mater. 2009;57(16):4891–901.CrossRefGoogle Scholar
  2. 2.
    Allahyarov E, Sandomirski K, Egelhaaf S, Löwen H. Crystallization seeds favour crystallization only during initial growth. Nat Commun. 2015;6:1–9.CrossRefGoogle Scholar
  3. 3.
    Cacciuto A, Auer S, Frenkel D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature. 2004;428(6981):404–6.CrossRefGoogle Scholar
  4. 4.
    Turnbull D, Cech R. Microscopic observation of the solidification of small metal droplets. J Appl Phys. 1950;21(8):804–10.CrossRefGoogle Scholar
  5. 5.
    Kim W, Cantor B. Solidification of tin droplets embedded in an aluminium matrix. J Mater Sci. 1991;26(11):2868–78.CrossRefGoogle Scholar
  6. 6.
    Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114(2):845–58.CrossRefGoogle Scholar
  7. 7.
    Sheng H, Lu K, Ma E. Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater. 1998;46(14):5195–205.CrossRefGoogle Scholar
  8. 8.
    Zhang D, Cantor B. Heterogeneous nucleation of In particles embedded in an Al matrix. Philos Mag A. 1990;62(5):557–72.CrossRefGoogle Scholar
  9. 9.
    Zhang D, Chattopadhyay K, Cantor B. Heterogeneous nucleation of solidification of cadmium particles embedded in an aluminium matrix. J Mater Sci. 1991;26(6):1531–44.CrossRefGoogle Scholar
  10. 10.
    Zhang D, Cantor B. Melting behaviour of In and Pb particles embedded in an Al matrix. Acta Metall Mater. 1991;39(7):1595–602.CrossRefGoogle Scholar
  11. 11.
    Khan PY, Bhattacharya V, Biswas K, Chattopadhyay K. Melting and solidification behavior of Pb–Sn embedded alloy nano-particles. J Nanopart Res. 2013;15(11):1–16.CrossRefGoogle Scholar
  12. 12.
    Shilyaeva Y, Gavrilov S, Matyna L. Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide. J Therm Anal Calorim. 2014;118(2):937–42.CrossRefGoogle Scholar
  13. 13.
    Kenel C, Leinenbach C. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys. J Alloys Compd. 2015;637:242–7.CrossRefGoogle Scholar
  14. 14.
    Cai J, Ma G, Liu Z, Zhang H, Wang A, Hu Z. Influence of rapid solidification on the mechanical properties of Mg-Zn-Ce-Ag magnesium alloy. Mater Sci Eng A. 2007;456(1):364–7.CrossRefGoogle Scholar
  15. 15.
    Yang W, Liu F, Yang G, Xu Z, Wang J, Wang Z. Analysis of crystallization kinetics of undercooled Fe-B hypereutectic alloy using DSC technique. Thermochim Acta. 2012;527:47–51.CrossRefGoogle Scholar
  16. 16.
    Perepezko J, Höckel P, Paik J. Initial crystallization kinetics in undercooled droplets. Thermochim Acta. 2002;388(1):129–41.CrossRefGoogle Scholar
  17. 17.
    Adamovsky S, Schick C. Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta. 2004;415(1):1–7.CrossRefGoogle Scholar
  18. 18.
    Bergmann D, Fritsching U, Bauckhage K. A mathematical model for cooling and rapid solidification of molten metal droplets. Int J Therm Sci. 2000;39(1):53–62.  https://doi.org/10.1016/S1290-0729(00)00195-1.CrossRefGoogle Scholar
  19. 19.
    Allen L, Ramanath G, Lai S, Ma Z, Lee S, Allman D, et al. 1,000,000 °C/s thin film electrical heater: Insitu resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett. 1994;64(4):417–9.CrossRefGoogle Scholar
  20. 20.
    Olson EA, Efremov MY, Zhang M, Zhang Z, Allen LH. The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst. 2003;12(3):355–64.CrossRefGoogle Scholar
  21. 21.
    Mathot V, Pyda M, Pijpers T, Poel GV, Van de Kerkhof E, Van Herwaarden S, et al. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522(1):36–45.CrossRefGoogle Scholar
  22. 22.
    Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: the device. Thermochim Acta. 2010;505(1):1–13.CrossRefGoogle Scholar
  23. 23.
    Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B. Isotropization, perfection and reorganization of the mesophase of isotactic polypropylene. Thermochim Acta. 2011;522(1):100–9.CrossRefGoogle Scholar
  24. 24.
    Gao Y, Zou C, Yang B, Zhai Q. Fast calorimetric scanning of micro-sized SnAgCu single droplet at a high cooling rate. Sci China Ser E. 2009;52(6):1707–11.CrossRefGoogle Scholar
  25. 25.
    Zhao B, Zhao J, Zhang W, Yang B, Zhai Q, Schick C, et al. Fast scanning calorimetric measurements and microstructure observation of rapid solidified Sn3. 5Ag solder droplets. Thermochim Acta. 2013;565:194–201.CrossRefGoogle Scholar
  26. 26.
    Yang B, Perepezko JH, Schmelzer JW, Gao Y, Schick C. Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter. J Chem Phys. 2014;140(10):104513.CrossRefGoogle Scholar
  27. 27.
    Yang B, Abyzov A, Zhuravlev E, Gao Y, Schmelzer J, Schick C. Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. J Chem Phys. 2013;138(5):054501.CrossRefGoogle Scholar
  28. 28.
    Zhao B, Li L, Lu F, Zhai Q, Yang B, Schick C, et al. Phase transitions and nucleation mechanisms in metals studied by nanocalorimetry: a review. Thermochim Acta. 2015;603:2–23.  https://doi.org/10.1016/j.tca.2014.09.005.CrossRefGoogle Scholar
  29. 29.
    Rhoades AM, Williams JL, Wonderling N, Androsch R, Guo J. Skin/core crystallinity of injection-molded poly (butylene terephthalate) as revealed by microfocus X-ray diffraction and fast scanning chip calorimetry. J Therm Anal Calorim. 2017; 127(1):939–946.CrossRefGoogle Scholar
  30. 30.
    Svoboda R. Glass transition kinetics measured by fast scanning calorimetry. J Therm Anal Calorim. 2015;122(2):1–11.CrossRefGoogle Scholar
  31. 31.
    Murray J. The Al–In (aluminum-indium) system. Bull Alloy Phase Diagr. 1983;4(3):271–8.CrossRefGoogle Scholar
  32. 32.
    Wierzchos J, Ascaso C. Application of back-scattered electron imaging to the study of the lichen-rock interface. J Microsc. 1994;175(1):54–9.CrossRefGoogle Scholar
  33. 33.
    Mueller B, Perepezko J. The undercooling of aluminum. Metall Trans A. 1991;18(6):1143–50.CrossRefGoogle Scholar
  34. 34.
    Acrivos C. A relationship between undercooling and atomized powder diameter. J Mater Sci. 1976;11(9):1752–3.CrossRefGoogle Scholar
  35. 35.
    Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C. Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim Acta. 2009;482(1–2):1–7.CrossRefGoogle Scholar
  36. 36.
    Kim WT, Zhang DL, Cantor B. Nucleation of solidification in liquid droplets. Metall Trans A. 1991;22(10):2487–501.CrossRefGoogle Scholar
  37. 37.
    Kim WT, Cantor B. Solidification behaviour of Pb droplets embedded in a Cu matrix. Acta Metall Mater. 1992;40(12):3339–47.CrossRefGoogle Scholar
  38. 38.
    Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21(10):1022–8.CrossRefGoogle Scholar
  39. 39.
    Moore K, Zhang D, Cantor B. Solidification of Pb particles embedded in Al. Acta Metall Mater. 1990;38(7):1327–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mannan Wu
    • 1
  • Quanliang Zhang
    • 1
  • Bingge Zhao
    • 1
  • Ling Zhang
    • 1
  • Qijie Zhai
    • 1
  • Yulai Gao
    • 1
    • 2
  1. 1.State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Laboratory for MicrostructuresShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations