Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 1, pp 401–408 | Cite as

Prediction of tensile modulus of semicrystalline polymers from a single melting curve recorded by calorimetry

  • János Molnár
  • Anna Jelinek
  • Anna Maloveczky
  • János Móczó
  • Alfréd Menyhárd
Article

Abstract

This work introduces an easy calculation method, which results in the elastic modulus of semicrystalline polymers from data obtained from a single melting curve recorded by calorimetry. It is well known that the mechanical properties of semicrystalline polymers depend on the crystalline structure; however, the number of direct correlations between crystalline structure and mechanical properties is limited. The melting and crystallization of the polymers studied in this work were measured using calorimetry; the mechanical properties were estimated by tensile tests on the standard shape specimens. Good agreement was found between the calculated and measured modulus values, indicating that the correlation is reliable. In addition, the method was tested for polypropylene and polyamide-6 which proves clearly that the correlation reported here is generally valid for semicrystalline polymers.

Keywords

Tensile modulus Crystalline structure Melting curve Prediction 

Notes

Acknowledgements

This work was supported by the ÚNKP-17-4-III and ÚNKP-17-3-I New National Excellence Program of the Ministry of Human Capacities. The authors would like to acknowledge the MOL Petrochemicals for the special set of iPP samples.

References

  1. 1.
    Padden FJ, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30(10):1479–84.  https://doi.org/10.1063/1.1734985.CrossRefGoogle Scholar
  2. 2.
    Phillips PJ, Mezghani K. Polypropylene, isotactic (polymorphism). In: Salamon JC, editor. The polymeric materials encyclopedia. Boca Raton: CRC Press; 1996. p. 6637–49.Google Scholar
  3. 3.
    Varga J. Beta-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B Phys. 2002;B41(4–6):1121–71.  https://doi.org/10.1081/MB-120013089.CrossRefGoogle Scholar
  4. 4.
    Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.  https://doi.org/10.1021/ma5009868.CrossRefGoogle Scholar
  5. 5.
    Fujiyama M. Higher order structure of injection-molded polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. London: Chapmann & Hall; 1995. p. 167–204.CrossRefGoogle Scholar
  6. 6.
    Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128(2):925–35.  https://doi.org/10.1007/s10973-016-6057-7.CrossRefGoogle Scholar
  7. 7.
    Boyd RH. The mechanical moduli of lamellar semicrystalline polymers. J Polym Sci Polym Phys Edit. 1983;21(4):493–504.  https://doi.org/10.1002/pol.1983.180210401.CrossRefGoogle Scholar
  8. 8.
    Zhou JJ, Liu JG, Yan SK, Dong JY, Li L, Chan CM, et al. Atomic force microscopy study of the lamellar growth of isotactic polypropylene. Polymer. 2005;46(12):4077–87.CrossRefGoogle Scholar
  9. 9.
    Pukánszky B, Mudra I, Staniek P. Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Add Tech. 1997;3(1):53–7.  https://doi.org/10.1002/vnl.10165.CrossRefGoogle Scholar
  10. 10.
    Menyhárd A, Suba P, László Z, Fekete HM, Mester ÁO, Horváth Z, et al. Direct correlation between modulus and the crystalline structure in isotactic polypropylene. Express Polym Lett. 2015;9(3):308–20.  https://doi.org/10.3144/expresspolymlett.2015.28.CrossRefGoogle Scholar
  11. 11.
    Haudin JM. Optical studies of polymer morphology. In: Meeten GH, editor. Optical properties of polymers. London: Elsevier; 1986. p. 167–264.Google Scholar
  12. 12.
    Nedkov E, Dobreva T. Optical properties of the three polymorphic forms of isotactic polypropylene. e-Polymers. 2002;2:042.CrossRefGoogle Scholar
  13. 13.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36(14):5150–6.CrossRefGoogle Scholar
  14. 14.
    Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Vörös G, Varga J, et al. Effect of the molecular structure of the polymer and nucleation on the optical properties of polypropylene homo- and copolymers. ACS Appl Mater Interfaces. 2014;6(10):7456–63.  https://doi.org/10.1021/am5008535.CrossRefPubMedGoogle Scholar
  15. 15.
    Menyhárd A, Gahleitner M, Varga J, Bernreitner K, Jääskeläinen P, Řysćd H, et al. The influence of nucleus density on optical properties in nucleated isotactic polypropylene. Eur Polym J. 2009;45(11):3138–48.CrossRefGoogle Scholar
  16. 16.
    Halpin JC, Kardos JL. Moduli of crystalline polymers employing composite theory. J Appl Phys. 1972;43(5):2235–41.  https://doi.org/10.1063/1.1661482.CrossRefGoogle Scholar
  17. 17.
    Boyd RH. Prediction of polymer crystal-structures and properties. Atomistic Model Phys Prop. 1994;116:1–25.  https://doi.org/10.1007/BFb0080195.CrossRefGoogle Scholar
  18. 18.
    McCullough RL, Wu CT, Seferis JC, Lindenmeyer PH. Predictions of limiting mechanical performance for anisotropic crystalline polymers. Polym Eng Sci. 1976;16(5):371–87.  https://doi.org/10.1002/pen.760160517.CrossRefGoogle Scholar
  19. 19.
    Crist B, Fisher CJ, Howard PR. Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress. Macromolecules. 1989;22(4):1709–18.  https://doi.org/10.1021/ma00194a035.CrossRefGoogle Scholar
  20. 20.
    Doyle MJ. On the effect of crystallinity on the elastic properties of semicrystalline polyethylene. Polym Eng Sci. 2000;40(2):330–5.  https://doi.org/10.1002/pen.11166.CrossRefGoogle Scholar
  21. 21.
    van Krevelen DV, Nijenhuis KT. Properties of polymers. Amsterdam: Elsevier; 2009.CrossRefGoogle Scholar
  22. 22.
    Monasse B, Haudin JM. Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985;263(10):822–31.  https://doi.org/10.1007/BF01412960.CrossRefGoogle Scholar
  23. 23.
    Romankiewicz A, Sterzynski T. The lamellar distribution in isotactic polypropylene modified by nucleation and processing. Macromol Symp. 2002;180:241–56.  https://doi.org/10.1002/1521-3900(200203)180:1<241::AID-MASY241>3.0.CO;2-9.CrossRefGoogle Scholar
  24. 24.
    Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Tranninger C, Kheirandish S, et al. Effect of molecular architecture on the crystalline structure and stiffness of ipp homopolymers: modeling based on annealing experiments. J Appl Polym Sci. 2013;130(5):3365–73.  https://doi.org/10.1002/app.39585.CrossRefGoogle Scholar
  25. 25.
    Brandrup J, Immergut EH, Grulke EA, editors. Polymer handbook. 4th ed. New York: Wiley; 1999.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • János Molnár
    • 1
  • Anna Jelinek
    • 1
  • Anna Maloveczky
    • 1
  • János Móczó
    • 2
  • Alfréd Menyhárd
    • 1
  1. 1.Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Materials Science and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations