Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 3, pp 1787–1796 | Cite as

Viscosity of carbon nanotube/water nanofluid

Equilibrium molecular dynamics
  • F. JabbariEmail author
  • A. Rajabpour
  • S. Saedodin


Special features of nanofluids as heat transfer media have made them very important. The first step for investigating nanofluids was to know the characteristics of nanofluid because they are very important for describing their behavior. Although many attempts have been made to model the thermo-physical properties of nanofluids, there is no comprehensive model to predict these properties. In this study, the viscosity of single-wall carbon nanotube–water nanofluid as most important thermo-physical property of nanofluid was investigated by equilibrium molecular dynamics simulation. In addition, the effect of volume fraction of nanoparticles and the nanofluid temperature on viscosity is studied. The viscosity variability was investigated in range of 0.125–0.734% and the temperature 25–65 °C. The results showed that viscosity increases with high volume fraction of nanoparticles and low temperature of nanofluid. Furthermore, maximum nanofluids viscosity was 320% with volume fractions of 0.73% at 25 °C.


Nanofluid Viscosity Molecular dynamic simulation Carbon nanotube Water 

Supplementary material

10973_2018_7458_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)


  1. 1.
    Bahiraei M. Particle migration in nanofluids: a critical review. Int J Therm Sci. 2016;109:90–113.CrossRefGoogle Scholar
  2. 2.
    Murshed SMS, Estelle P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.CrossRefGoogle Scholar
  3. 3.
    Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126:617–25.CrossRefGoogle Scholar
  4. 4.
    Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2018;131:1577–86.CrossRefGoogle Scholar
  5. 5.
    Masuda H, Ebata A, Teramae K, Hishinuma N, Ebata Y. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultrafine particles). Netsu Bussei. 1993;7:227–33.CrossRefGoogle Scholar
  6. 6.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition; San Francisco, CA; 1995.Google Scholar
  7. 7.
    Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/Eg hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437–47.CrossRefGoogle Scholar
  8. 8.
    Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126:1455–62.CrossRefGoogle Scholar
  9. 9.
    Zadeh AD, Toghraie D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim. 2018;131:1449–61.CrossRefGoogle Scholar
  10. 10.
    Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Trans Eng. 2017;38:853–66.CrossRefGoogle Scholar
  11. 11.
    Hosseini SM, Safaei MR, Goodarzi M, lrashed AA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.CrossRefGoogle Scholar
  12. 12.
    Safaei MR, Ahmadi G, Goodarzi MS, Shadloo MS, Goshayeshi HR, Dahari M. Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets–silver/water nanofluids. Fluids. 2016;1:1–12.CrossRefGoogle Scholar
  13. 13.
    Safaei MR, Gooarzi M, Akbari OA, Shadloo MS, Dahari M. Electronics cooling. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. In Tech; 2016.
  14. 14.
    Safaei MR, Shadloo MS, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, et al. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8:1–14.CrossRefGoogle Scholar
  15. 15.
    Karimipour A, D’Orazio A, SafdariShadloo M. The effects of different nano particles of Al2O3 and Ag on the Mhd nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.CrossRefGoogle Scholar
  16. 16.
    Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A Appl. 2014;66:1321–40.CrossRefGoogle Scholar
  17. 17.
    Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2018. Scholar
  18. 18.
    Jabbari F, Rajabpour A, Saedodin S. Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies. Chem Eng Sci. 2017;174:67–81.CrossRefGoogle Scholar
  19. 19.
    Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass. 2016;74:108–13.CrossRefGoogle Scholar
  20. 20.
    Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethyleneglycol hybrid nanofluid: experimentalstudy. Physica E. 2016;84:564–70.CrossRefGoogle Scholar
  21. 21.
    Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, et al. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.CrossRefGoogle Scholar
  22. 22.
    Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, et al. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass. 2016;73:114–23.CrossRefGoogle Scholar
  23. 23.
    Esfahani JA, Safaei MR, Goharimanesh M, Oliveira LRd, Goodarzi M, Shamshirb S, et al. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol. 2017;317:458–70.CrossRefGoogle Scholar
  24. 24.
    Ponmozhi J, Gonçalves FAMM, Ferreira AGM, Fonseca IMA, Kanagaraj S, Martins N, et al. Thermodynamic and transport properties of CNT-water based nanofluids. J Nano Res. 2010;11:101–6.CrossRefGoogle Scholar
  25. 25.
    Halelfadl S, Estelle P, Aladag B, Doner N, Mar T. Viscosity of carbon nanotubes water based nanofluids: inuence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.CrossRefGoogle Scholar
  26. 26.
    Izadi M, Shahmardan MM, Behzadmehr A, Rashidi AM, Amrollahi A. Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid. Trans Phenom Nano Micro Scales. 2015;3:1–13.Google Scholar
  27. 27.
    Sabiha MA, Mostafizur RM, Saidur R, Mekhilef S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf. 2016;93:862–71.CrossRefGoogle Scholar
  28. 28.
    Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass. 2016;78:207–13.CrossRefGoogle Scholar
  29. 29.
    Xing M, Yu J, Wang R. Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng. 2015;87:344–51.CrossRefGoogle Scholar
  30. 30.
    Dalkilic AS, Küçükyıldırım BO, Eker AA, Çebi A, Tapan S, Jumpholkul C, et al. Experimental investigation on the viscosity of water-CNT and antifreeze-CNT nanofluids. Int Commun Heat Mass. 2017;80:47–59.CrossRefGoogle Scholar
  31. 31.
    Wang L, Dumont RS, Dickson JM. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes. J Chem Phys. 2013;138:124701-1–9.Google Scholar
  32. 32.
    Lu W-Q, Fan Q-M. Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method. Eng Anal Bound Elem. 2008;32:282–9.CrossRefGoogle Scholar
  33. 33.
    Lu G, Duan Y-Y, Wang X-D. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J Nanopart Res. 2014;16:1–11.Google Scholar
  34. 34.
    Rudyak VY, Krasnolutskii SL. Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys Lett A. 2014;378:1845–9.CrossRefGoogle Scholar
  35. 35.
    Rudyak VY, Krasnolutskii SL. Simulation of the nanofluid viscosity coefficient by the molecular dynamics method. Tech Phys. 2015;60:798–804.CrossRefGoogle Scholar
  36. 36.
    Pátek J, Hrubý J, Klomfar J, Součková M, Harvey AH. Reference correlations for thermophysical properties of liquid water at 0.1 MPa. J Phys Chem. 2009;38:21–9.Google Scholar
  37. 37.
    Arani AAA, Akbari OA, Safaei MR, Marzbane A, Alrashed AAAA, Ahmadi GR, et al. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.CrossRefGoogle Scholar
  38. 38.
    Daivis PJ, Evans DJ. Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane. J Chem Phys. 1994;100:541–7.CrossRefGoogle Scholar
  39. 39.
    Mondello M, Grest GS. Viscosity calculations of n-alkanes by equilibrium molecular dynamics. J Chem Phys. 1997;106:9327–36.CrossRefGoogle Scholar
  40. 40.
    Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E. 1999;59:4894–8.CrossRefGoogle Scholar
  41. 41.
    Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn. 1957;12:570–86.CrossRefGoogle Scholar
  42. 42.
    Melchionna S, Ciccotti G, Holian BL. Hoover NPT dynamics for systems varying in shape and size. Mol Phys. 1993;78:533–44.CrossRefGoogle Scholar
  43. 43.
    Plimpton S. fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.CrossRefGoogle Scholar
  44. 44.
    Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505-1–-12.CrossRefGoogle Scholar
  45. 45.
    Tersoff J. modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–8.CrossRefGoogle Scholar
  46. 46.
    Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42:9458–71.CrossRefGoogle Scholar
  47. 47.
    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (Rebo) potential energy expression for hydrocarbons. J Phys Condens Mater. 2002;14:783–802.CrossRefGoogle Scholar
  48. 48.
    Berber S, Kwon Y-K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84:4613–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zheng Q, Su G, Wang J, Guo H. Thermal conductance for single wall carbon nanotubes. Eur Phys J B. 2002;25:233–8.CrossRefGoogle Scholar
  50. 50.
    Hirunsit P, Balbuena PB. Effects of confinement on water structure and dynamics: a molecular simulation study. J Phys Chem C. 2007;111:1709–15.CrossRefGoogle Scholar
  51. 51.
    Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–7.CrossRefGoogle Scholar
  52. 52.
    Bushehri MK, Mohebbi A, Rafsanjani HH. Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. J Eng Thermophys. 2016;25:89–400.CrossRefGoogle Scholar
  53. 53.
    Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications. J Therm Anal Calorim. 2015;123:1399–409.CrossRefGoogle Scholar
  54. 54.
    White FM. Fluid Mechanics. 1999: McGraw Hill, 2011. pp. 862.Google Scholar
  55. 55.
    Heyes DM. Physical properties of liquid water by molecular dynamics simulations. J Chem Soc Faraday Trans. 1994;90:3039–49.CrossRefGoogle Scholar
  56. 56.
    Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys. 1906;19:289–306.CrossRefGoogle Scholar
  57. 57.
    Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.CrossRefGoogle Scholar
  58. 58.
    Batchelor GK. the effect of brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringSemnan UniversitySemnanIran
  2. 2.Mechanical Engineering DepartmentsImam Khomeini International UniversityQazvinIran

Personalised recommendations