Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1439–1445 | Cite as

Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

  • João L. GomesJrEmail author
  • Anderson Gonçalves
  • Aloisi Somer
  • Jaqueline V. Gunha
  • Gerson K. Cruz
  • Andressa Novatski


This work discusses some new insights into the structural and thermal properties of the glass system \(\hbox {TeO}_{2}\)\(\hbox {Li}_{2}\hbox {O}\)\(\hbox {MoO}_{3}\). Glasses in the composition \((80 - 2x)\) \(\hbox {TeO}_{2}\) − \(x\hbox {Li}_{2}\hbox {O}\) − \((20 + x)\) \(\hbox {MoO}_{3}\) (TLM) where \(x\,=\,0,\,5,\,10,\,15\) and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (\(T_{\mathrm{g}}\)), the onset crystallization (\(T_{\mathrm{x}}\)), and the first exothermic peak at the crystallization temperatures (\(T_{\mathrm{c}}\)) were determined from DSC scans. Thermal stability (\(\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}\)) increases up to \(x\,=\,15\,\hbox {mol}\%\) followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li\(_2\)O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of \(\hbox {Li}_2\hbox {O}\) in the \(\hbox {TeO}_{2}\)\(\hbox {MoO}_{3}\) system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.


Tellurite glasses Characteristic temperature Density Molar volume Molecular electron polarizability 


  1. 1.
    Aida K, Komatsu T, Dimitrov V. Thermal stability, electronic polarisability and optical basicity of ternary tellurite glasses. Phys Chem Glasses. 2001;42(2):103–11.Google Scholar
  2. 2.
    Brady GW. Structure of tellurium oxide glass. J Chem Phys. 1957;27(1):300–3.CrossRefGoogle Scholar
  3. 3.
    Capanema W, Yukimitu K, Moraes JCS, Santos FA, Figueiredo MS, Sidel SM, Reynoso VCS, Sakai OA, Medina AN. The structure and optical dispersion of the refractive index of tellurite glass. Opt Mater. 2011;33(11):1569–72.CrossRefGoogle Scholar
  4. 4.
    Çelikbilek M, Erçin Ersundu A, Aydin S. Glass formation and characterization studies in the TeO\(_{2}\)-WO\(_{3}\)-Na\(_{2}\)O system. J Am Ceram Soc. 2013;96(5):1470–6.CrossRefGoogle Scholar
  5. 5.
    Chowdari BVR, Tan KL, Ling F. Synthesis and characterization of xCu\(_{2}\)o\(\cdot\)-yTeO\(_{2}\)-\(\cdot\)(1-x-y)MoO\(_{3}\) glass system. Solid State Ion. 1998;113:711–21.CrossRefGoogle Scholar
  6. 6.
    Dietzel A. Glass structure and glass properties. Glasstech. 1968;22:41.Google Scholar
  7. 7.
    Dimitriev Y, Dimitrov V, Arnaudov M. Ir spectra and structures of tellurite glasses. J Mater Sci. 1983;18(5):1353–8.CrossRefGoogle Scholar
  8. 8.
    Dimitrov V, Komatsu T. Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J Non Cryst Solids. 1999;249(2):160–79.CrossRefGoogle Scholar
  9. 9.
    Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metall. 2010;45(3):219–50.Google Scholar
  10. 10.
    Dimitrov V, Komatsu T. Optical basicity and chemical bonding of ternary tellurite glasses. Phys Chem Glasses Eur J Glass Sci Technol Part B. 2014;55(1):13–7.Google Scholar
  11. 11.
    Dimitrov V, Komatsu T. Polarizability, basicity and chemical bonding of single and multicomponent oxide glasses. J Chem Technol Metall. 2015;50(4):387–96.Google Scholar
  12. 12.
    Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys. 1996;79(3):1736–40.CrossRefGoogle Scholar
  13. 13.
    El-Mallawany R. The optical properties of tellurite glasses. J Appl Phys. 1992;72(5):1774–7.CrossRefGoogle Scholar
  14. 14.
    El-Mallawany R. Devitrification and vitrification of tellurite glasses. J Mater Sci Mater Electron. 1995;6(1):1–3.CrossRefGoogle Scholar
  15. 15.
    El-Mallawany R. Tellurite glasses: Part 2. Anelastic, phase separation, debye temperature and thermal properties. Mater Chem Phys. 1999;60(2):103–31.CrossRefGoogle Scholar
  16. 16.
    El-Mallawany RA. Tellurite glasses handbook: physical properties and data. Boca Raton: CRC press; 2011.CrossRefGoogle Scholar
  17. 17.
    Elkhoshkhany N, El-Mallawany R, Syala E. Mechanical and thermal properties of TeO\(_{2}\)–Bi\(_{2}\)0\(_{3}\)–V\(_{2}\)O\(_{5}\)–Na\(_{2}\)O–TiO\(_{2}\) glass system. Ceram Int. 2016;42(16):19,218–24.CrossRefGoogle Scholar
  18. 18.
    Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducasse L, Canioni L, Segonds P, Sarger L, Ducasse A. Optical non-linearity in oxide glasses. J Non Cryst Solids. 1996;203:96–101.CrossRefGoogle Scholar
  19. 19.
    Gomes JL Jr, Piazzetta RLS, Gonçalves A, Somer A, da Cruz GK, Serbena FC, Novatski A. Correlation between nonbridging oxygens and the thermal and optical properties of the TeO\(_{2}\)-Li\(_{2}\)O-MoO\(_{3}\) glassy system. J Mater Res. 2015;30(16):2417–24.CrossRefGoogle Scholar
  20. 20.
    Gulenko A, Masson O, Berghout A, Hamani D, Thomas P. Atomistic simulations of TeO\(_{2}\)-based glasses: interatomic potentials and molecular dynamics. Phys Chem Chem Phys. 2014;16(27):14,150–60.CrossRefGoogle Scholar
  21. 21.
    Hajer S, Halimah M, Azmi Z, Azlan M. Optical properties of zinc–borotellurite doped samarium. Chalcogenide Lett. 2014;11(11):553–66.Google Scholar
  22. 22.
    Halimah M, Daud W, Sidek H, Zaidan A, Zainal A. Optical properties of ternary tellurite glasses. Mater Sci Pol. 2010;28(1):173–80.Google Scholar
  23. 23.
    Jauhariyah MN, Setyarsih W, Yantidewi M, Marzuki A, et al. Refractive index measurement of tellurite glasses by using Brewster angle method. In: Sensors, instrumentation, measurement and metrology (ISSIMM), international seminar on. IEEE; 2016. pp. 71–4.Google Scholar
  24. 24.
    Jose R, Arai Y, Ohishi Y. Optical properties of MoO\(_{3}\) containing tellurite glasses. Appl Phys Lett. 2008;93(16):161–901.CrossRefGoogle Scholar
  25. 25.
    Kalampounias AG, Boghosian S. Distribution of tellurite polymorphs in the xM\(_{2}\)O-(1- x)TeO\(_{2}\) (M= Li, Na, K, Cs, and Rb) binary glasses using Raman spectroscopy. Vib Spectrosc. 2012;59:18–22.CrossRefGoogle Scholar
  26. 26.
    Kaur A, Khanna A, González F, Pesquera C, Chen B. Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. J Non Cryst Solids. 2016;444:1–10.CrossRefGoogle Scholar
  27. 27.
    Kim SH, Yoko T, Sakka S. Linear and nonlinear optical properties of Teo\(_{2}\) glass. J Am Ceram Soc. 1993;76(10):2486–90.CrossRefGoogle Scholar
  28. 28.
    Lakshminarayana G, Kaky KM, Baki S, Lira A, Nayar P, Kityk I, Mahdi M. Physical, structural, thermal, and optical spectroscopy studies of TeO\(_{2}\)-B\(_{2}\)O\(_{3}\)-MoO\(_{3}\)-ZnO-R\(_{2}\)O (R= Li, Na, and K/MO (M= Mg, Ca, and Pb) glasses. J Alloys Compd. 2017;690:799–816.CrossRefGoogle Scholar
  29. 29.
    Manikandan N, Ryasnyanskiy A, Toulouse J. Thermal and optical properties of TeO\(_{2}\)-ZnO-BaO glasses. J Non Cryst Solids. 2012;358(5):947–51.CrossRefGoogle Scholar
  30. 30.
    Manning S, Ebendorff-Heidepriem H, Monro TM. Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Opt Mater Express. 2012;2(2):140–52.CrossRefGoogle Scholar
  31. 31.
    Mekki A, Khattak G, Wenger L. Structural and magnetic properties of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 2005;351(30–32):2493–500.CrossRefGoogle Scholar
  32. 32.
    Moraes JCS, Nardi J, Sidel S, Mantovani B, Yukimitu K, Reynoso V, Malmonge L, Ghofraniha N, Ruocco G, Andrade L, et al. Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses. J Non Cryst Solids. 2010;356(41):2146–50.CrossRefGoogle Scholar
  33. 33.
    Nasu H, Matsushita O, Kamiya K, Kobayashi H, Kubodera K. Third harmonic generation from Li\(_{2}\)O-TiO\(_{2}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 1990;124(2–3):275–7.CrossRefGoogle Scholar
  34. 34.
    Pal M, Hirota K, Tsujigami Y, Sakata H. Structural and electrical properties of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Phys D Appl Phys. 2001;34(4):459.CrossRefGoogle Scholar
  35. 35.
    Ramamoorthy RK, Bhatnagar AK. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses. J Alloys Compd. 2015;623:49–54.CrossRefGoogle Scholar
  36. 36.
    Reben M, Grelowska I, Kosmal M, Szumera M, et al. Influence of modifiers on the thermal characteristic of glasses of the Teo\(_{2}\)-P\(_{2}\)o\(_{5}\)-ZnO-PbF\(_{2}\) system. J Therm Anal Calorim. 2016;125(3):1279–86.CrossRefGoogle Scholar
  37. 37.
    Saad M, Poulain M. Glass forming ability criterion. In: Mat. Sci. Forum, 1987; vol. 19, pp. 11–18. Trans Tech PublGoogle Scholar
  38. 38.
    Sakida S, Hayakawa S, Yoko T. Part 2. 125 Te NMR study of M\(_{2}\)O-Te\({O}_{2}\) (M= Li, Na, K, Rb and Cs) glasses. J Non Cryst Solids. 1999;243(1):13–25.CrossRefGoogle Scholar
  39. 39.
    Sekiya T, Mochida N, Ogawa S. Structural study of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 1995;185(1–2):135–44.CrossRefGoogle Scholar
  40. 40.
    Sekiya T, Mochida N, Ohtsuka A, Tonokawa M. Raman spectra of Mo\(_{1/2}\)-TeO\(_{2}\) (m= Li, Na, K, Rb, Cs and Tl) glasses. J Non Cryst Solids. 1992;144:128–44.CrossRefGoogle Scholar
  41. 41.
    Sokolov V, Plotnichenko V, Koltashev V, Grishin I. On the structure of molybdate-tellurite glasses. J Non Cryst Solids. 2009;355(4–5):239–51.CrossRefGoogle Scholar
  42. 42.
    Souri D. Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag\(_{2}\)O/V\(_{2}\)O\(_{5}\) ratio. J Non Cryst Solids. 2017;475:136–43.CrossRefGoogle Scholar
  43. 43.
    Souri D, Elahi M. Effect of high electric field on the dc conduction of TeO\(_{2}\)-V\(_{2}\)O\(_{5}\)-MoO\(_{3}\) amorphous bulk material. Czechoslov J Phys. 2006;56(4):419–25.CrossRefGoogle Scholar
  44. 44.
    Souri D, Honarvar F, Tahan ZE. Characterization of semiconducting mixed electronic-ionic TeO\(_{2}\)V\(_{2}\)O\(_{5}\)Ag\(_{2}\)O glasses by employing ultrasonic measurements and vicker’s microhardness. J Alloys Compd. 2017;699:601–10.CrossRefGoogle Scholar
  45. 45.
    Souri D, Mohammadi M, Zaliani H. Effect of antimony on the optical and physical properties of Sb-V\(_{2}\)O\(_{5}\)-TeO\(_{2}\) glasses. Electron Mater Lett. 2014;10(6):1103–8.CrossRefGoogle Scholar
  46. 46.
    Souri D, Shahmoradi Y. Calorimetric analysis of non-crystalline TeO\(_{2}\)-V\(_{2}\)O5-Sb\(_{2}\)O\(_{3}\). J Therm Anal Calorim. 2017;129(1):601–7.CrossRefGoogle Scholar
  47. 47.
    Souri D, Shomalian K. Band gap determination by absorption spectrum fitting method (asf) and structural properties of different compositions of (60-x)V\(_{2}\)o\(_{5}\)-40TeO\(_{2}\)-xSb\(_{2}\)o\(_{3}\) glasses. J Non Cryst Solids. 2009;355(31–33):1597–601.CrossRefGoogle Scholar
  48. 48.
    Tanaka K, Yoko T, Yamada H, Kamiya K. Structure and ionic conductivity of LiCl- Li\(_{2}\)O-TeO\(_{2}\) glasses. J Non Cryst Solids. 1988;103(2–3):250–6.CrossRefGoogle Scholar
  49. 49.
    Tikhonova EL, Lyakaev DV, Grishin IA, Kotkova AM, Markin AV. Thermodynamic properties of (TeO\(_{2}\)) \(_{n}\) (MoO\(_{3}\))\(_{1-n}\) glasses. Inorg Mater. 2017;53(11):1201–8.CrossRefGoogle Scholar
  50. 50.
    Yukimitu K, Oliveira R, Araujo E, Moraes JCS, Avanci L. DSC studies on crystallization mechanisms of tellurite glasses. Thermochim Acta. 2005;426(1–2):157–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • João L. GomesJr
    • 1
    Email author
  • Anderson Gonçalves
    • 1
  • Aloisi Somer
    • 1
  • Jaqueline V. Gunha
    • 1
  • Gerson K. Cruz
    • 1
  • Andressa Novatski
    • 1
  1. 1.Departamento de FísicaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil

Personalised recommendations