Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1739–1748 | Cite as

Fe2O3–Al2O3 oxygen carrier materials for chemical looping combustion, a redox thermodynamic and thermogravimetric evaluation in the presence of H2S

  • Mehdi Pishahang
  • Yngve Larring
  • Juan Adánez
  • Pilar Gayán
  • Martin Sunding
Article

Abstract

Alumina-supported Fe2O3 oxygen carrier material (OCM) system is among the most promising OCM systems for solid and gaseous fuel CLC. This work utilizes a comprehensive thermogravimetric and thermodynamic equilibrium approach to redox and CLOU performance, oxygen transfer capacity, reduction rate and sulfur tolerance of the Fe2O3 impregnated on Al2O3 OCM. Thermodynamic evaluations reveal that the beneficial composition range lies in a wide range of 7.5–34% molar Fe2O3 ratios. This is the range at which aluminum-rich corundum phase, i.e., (Al, Fe)2O3, remains stable throughout the oxidizing to very reducing oxygen partial pressures in fuel reactor. The experimental system in this study contains 20 mass% Fe2O3, i.e., XFe = 13.8% molar which lies well within this interval. Deep redox cycle experiments confirm the thermodynamic modeling and during the long residence time of this experiment, the sample is almost fully reduced and exhibits its thermodynamic redox oxygen capacity of close to 1.5 mass%. Extension of the deep redox cycles to 15 cycles induces no performance deterioration in terms of capacity, rate of reduction or morphological failure. The redox experiment under sour reducing gas indicates no H2S poisoning for the 20 mass% Fe2O3 supported on Al2O3 OCM. The findings that this system is not affected with the H2S content of the gas, and the prediction of the SO2 release from the fuel reactor is in good agreement with our recent reactor testing findings available in the literature.

Keywords

OCM TGA CLC Hydrogen sulfide Iron oxide Alumina 

Notes

Acknowledgements

The work presented in this article is conducted as part of the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 608571 (Project acronym SUCCESS).

References

  1. 1.
    Fan LS. Chemical looping systems for fossil energy conversions. Hoboken: Wiley; 2011.Google Scholar
  2. 2.
    Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent separations: a review. Chem Eng Sci. 2008;63:4433–51.CrossRefGoogle Scholar
  3. 3.
    Erlach B, Schmidt M, Tsatsaronis G. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy. 2011;36:3804–15.CrossRefGoogle Scholar
  4. 4.
    Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels. 2004;18:371–7.CrossRefGoogle Scholar
  5. 5.
    Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P, Celaya J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chem Eng Sci. 2007;62:533–49.CrossRefGoogle Scholar
  6. 6.
    Larring Y, Braley C, Pishahang M, Andreassen KA, Bredesen R. Evaluation of a mixed Fe–Mn oxide system for chemical looping combustion. Energy Fuels. 2015;29:3438–45.CrossRefGoogle Scholar
  7. 7.
    Larring Y, Pishahang M, Sunding MF, Tsakalakis K. Fe–Mn based minerals with remarkable redox characteristics for chemical looping combustion. Fuel. 2015;159:169–78.CrossRefGoogle Scholar
  8. 8.
    Moghtaderi B, Song H. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion. Energy Fuels. 2010;24:5359–68.CrossRefGoogle Scholar
  9. 9.
    Mukherjee S, Kumar P, Yang A, Fennell P. A systematic investigation of the performance of copper-, cobalt-, iron-, manganese- and nickel-based oxygen carriers for chemical looping combustion technology through simulation models. Chem Eng Sci. 2015;130:79–91.CrossRefGoogle Scholar
  10. 10.
    Zhang S, Rajendran S, Henderson S, Zeng D, Xiao R, Bhattacharya S. Use of pyrite cinder as an iron-based oxygen carrier in coal-fueled chemical looping combustion. Energy Fuels. 2015;29:2645–55.CrossRefGoogle Scholar
  11. 11.
    Abbasi M, Farniaei M, Rahimpour MR, Shariati A. Simultaneous syngas production with different H2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC. J Energy Chem. 2015;24:54–64.CrossRefGoogle Scholar
  12. 12.
    Galvita VV, Poelman H, Bliznuk V, Detavernier C, Marin GB. CeO2-Modified Fe2O3 for CO2 utilization via chemical looping. Ind Eng Chem Res. 2013;52:8416–26.CrossRefGoogle Scholar
  13. 13.
    Zhu X, Li K, Wei Y, Wang H, Sun L. Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: evolution of its structure and reducibility. Energy Fuels. 2014;28:754–60.CrossRefGoogle Scholar
  14. 14.
    Ismail M, Liu W, Scott SA. The performance of Fe2O3–CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production. Energy Procedia. 2014;63:87–97.CrossRefGoogle Scholar
  15. 15.
    Liu W, Dennis JS, Scott SA. The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping. Ind Eng Chem Res. 2012;51:16597–609.CrossRefGoogle Scholar
  16. 16.
    Azimi G, Leion H, Mattisson T, Ryden M, Snijkers F, Lyngfelt A. Mn–Fe oxides with support of MgAl2O4, CeO2, ZrO2 and Y2O3–ZrO2 for chemical-looping combustion and chemical-looping with oxygen uncoupling. Ind Eng Chem Res. 2014;53:10358–65.CrossRefGoogle Scholar
  17. 17.
    Qin W, Chen Q, Wang Y, Dong C, Zhang J, Li W, Yang Y. Theoretical study of oxidation–reduction reaction of Fe2O3 supported on MgO during chemical looping combustion. Appl Surf Sci. 2013;266:350–4.CrossRefGoogle Scholar
  18. 18.
    Gu Z, Li K, Wang H, Wei Y, Yan D, Qiao T. Syngas production from methane over CeO2–Fe2O3 mixed oxides using a chemical-looping method. Kinet Catal. 2013;54:326–33.CrossRefGoogle Scholar
  19. 19.
    Jerndal E, Mattisson T, Lyngfelt A. Thermal analysis of chemical-looping combustion. Chem Eng Res Des. 2006;84:795–806.CrossRefGoogle Scholar
  20. 20.
    Cabello A, Gayan P, Pans MA, Dueso C, Garcia-Labiano F, Abad A, de Diego LF, Adanez J. Evaluation of a highly reactive and sulfur resistant synthetic Fe-based oxygen carrier for CLC using gaseous fuels. Energy Procedia. 2013;37:580–7.CrossRefGoogle Scholar
  21. 21.
    Gayán P, Pans MA, Ortiz M, Abad A, de Diego LF, García-Labiano F, Adánez J. Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR–CLC system in a continuous CLC unit. Fuel Process Technol. 2012;96:37–47.CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Doroodchi E, Moghtaderi B. Comprehensive study of Fe2O3/Al2O3 reduction with ultralow concentration methane under conditions pertinent to chemical looping combustion. Energy Fuels. 2015;29:1951–60.CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Doroodchi E, Moghtaderi B. Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion. Energy Fuels. 2015;29:337–45.CrossRefGoogle Scholar
  24. 24.
    Ishida M, Takeshita K, Suzuki K, Ohba T. Application of Fe2O3–Al2O3 composite particles as solid looping material of the chemical-loop combustor. Energy Fuels. 2015;19:2514–8.CrossRefGoogle Scholar
  25. 25.
    Zhang J, Guo Q, Liu Y, Cheng Y. Preparation and characterization of Fe2O3/Al2O3 using the solution combustion approach for chemical looping combustion. Ind Eng Chem Res. 2012;51:12773–81.CrossRefGoogle Scholar
  26. 26.
    Chiu PC, Ku Y, Wu YL, Wu HC, Kuo TL. Characterization and evaluation of prepared Fe2O3/Al2O3 oxygen carriers for chemical looping process. Aerosol Air Qual Res. 2014;14:981–90.CrossRefGoogle Scholar
  27. 27.
    Mei D, Abad A, Zhao H, Adánez J, Zheng C. On a highly reactive Fe2O3/Al2O3 oxygen carrier for in situ gasification chemical looping combustion. Energy Fuels. 2014;28:7043–52.CrossRefGoogle Scholar
  28. 28.
    Guo L, Zhao HB, Ma JC, Mei D, Zheng C. Comparison of large-scale production methods of Fe2O3/Al2O3 oxygen carriers for chemical-looping combustion. Chem Eng Technol. 2014;37:1211–9.CrossRefGoogle Scholar
  29. 29.
    de Diego LF, García-Labiano F, Gayán P, Abad A, Cabello A, Adánez J, Sprachmann G. Performance of Cu- and Fe-based oxygen carriers in a 500 Wth CLC unit for sour gas combustion with high H2S content. Int J Greenh Gas Control. 2014;28:168–79.CrossRefGoogle Scholar
  30. 30.
    Hafizi A, Rahimpour MR, Hassanajili S. Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process. Int J Hydrog Energy. 2015;40:16159–68.CrossRefGoogle Scholar
  31. 31.
    Wang Y, Wang X, Hua X, Zhao C, Wang W. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation. J Therm Anal Calorim. 2014;129:1831–8.CrossRefGoogle Scholar
  32. 32.
    Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy Fuels. 2017;21:1843–53.CrossRefGoogle Scholar
  33. 33.
    Cabello A, Abad A, García-Labiano F, Gayán P, de Diego L, Adánez J. Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled chemical looping combustion. Chem Eng J. 2014;258:265–80.CrossRefGoogle Scholar
  34. 34.
    Cabello A, Dueso C, García-Labiano F, Gayán P, Abad A, de Diego L, Adánez J. Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit. Fuel. 2014;121:117–25.CrossRefGoogle Scholar
  35. 35.
    Shafiefarhood A, Stewart A, Li F. Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Fuel. 2015;139:1–10.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Sustainable Energy TechnologiesSINTEF Materials and ChemistryOsloNorway
  2. 2.Department of Energy and EnvironmentInstituto de Carboquímica (ICB-CSIC)SaragossaSpain

Personalised recommendations