Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 713–728 | Cite as

Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids

  • Yaghoub Dehghani
  • Ali AbdollahiEmail author
  • Arash Karimipour
Article

Abstract

In this study, the effect of temperature and mass fraction of Al2O3 and WO3 nanoparticles dispersed in deionized water and liquid paraffin was investigated on dynamic viscosity of nanofluid. The results of the TEM tests showed that the size of Al2O3 and WO3 nanoparticles was ranged from 10 to 60 nm, and the results showed that nanoparticles were semi-spherical. Also the results of DLS and zeta potential tests, respectively, exhibited the uniform size and high stability of the nanoparticles in the basefluid environment. The findings showed that adding a certain amount of nanoparticles to water and liquid paraffin increases dynamic viscosity, and in the case of various shear rates, the viscosity is constant for the water-based nanofluids, which indicates the Newtonian behavior of the nanofluid. In addition, for those prepared by liquid paraffin as a basefluid, the viscosity does not remain constant at different shear rates and at low amount of shear rate the viscosity achieves higher value, indicating non-Newtonian behavior of liquid paraffin-based nanofluids. The results showed that by increasing the temperature in liquid paraffin-based nanofluid the uniformity and linearity of the viscosity curve at various shear rates could be observed, which represents an approach for Newtonian behavior of nanofluid at higher temperatures. These results also showed that with increasing the mass fraction of nanoparticles in water and liquid paraffin, the viscosity increases at different shear rates. Finally, the correlation presented in this study shows that for nanofluid viscosity as a function of nanoparticles load and temperature, the deviation of correlated data from experimental values is less than 10%.

Keywords

Nanofluid Dynamic viscosity Basefluid types Nanoparticles types 

References

  1. 1.
    Choi SU-S. Nanofluid technology: current status and future research. Argonne National Lab. (ANL), Argonne, IL (United States); 1998.Google Scholar
  2. 2.
    Attari H, Derakhshanfard F, Darvanjooghi MHK. Effect of temperature and mass fraction on viscosity of crude oil-based nanofluids containing oxide nanoparticles. Int Commun Heat Mass Transfer. 2017;82:103–13.CrossRefGoogle Scholar
  3. 3.
    Darvanjooghi MHK, Esfahany MN. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in situ prepared silica–ethanol nanofluid. Int Commun Heat Mass Transfer. 2016;77:148–54.CrossRefGoogle Scholar
  4. 4.
    Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.CrossRefGoogle Scholar
  5. 5.
    Abdollahi A, Salimpour MR. Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field. Eur Phys J Plus. 2016;131(11):414.CrossRefGoogle Scholar
  6. 6.
    Abdollahi A, Salimpour MR, Etesami N. Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl Therm Eng. 2017;111:1101–10.CrossRefGoogle Scholar
  7. 7.
    Salimpour MR, Abdollahi A, Afrand M. An experimental study on deposited surfaces due to nanofluid pool boiling: comparison between rough and smooth surfaces. Exp Thermal Fluid Sci. 2017;88:288–300.CrossRefGoogle Scholar
  8. 8.
    Taghizadeh-Tabari Z, Heris SZ, Moradi M, Kahani M. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew Sustain Energy Rev. 2016;58:1318–26.CrossRefGoogle Scholar
  9. 9.
    Yu W, France DM, Routbort JL, Choi SU. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 2008;29(5):432–60.CrossRefGoogle Scholar
  10. 10.
    Azmi W, Sharma K, Sarma P, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Thermal Fluid Sci. 2013;51:103–11.CrossRefGoogle Scholar
  11. 11.
    Chandrasekar M, Suresh S, Bose AC. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Thermal Fluid Sci. 2010;34(2):122–30.CrossRefGoogle Scholar
  12. 12.
    Hwang KS, Jang SP, Choi SU. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf. 2009;52(1–2):193–9.CrossRefGoogle Scholar
  13. 13.
    Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26(6):855–64.CrossRefGoogle Scholar
  14. 14.
    Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.CrossRefGoogle Scholar
  15. 15.
    Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transfer. 2003;125(1):151–5.CrossRefGoogle Scholar
  16. 16.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.CrossRefGoogle Scholar
  17. 17.
    Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig. 2013;36(8):2233–41.CrossRefGoogle Scholar
  18. 18.
    Mahbubul I, Saidur R, Amalina M. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55(4):874–85.CrossRefGoogle Scholar
  19. 19.
    Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.CrossRefGoogle Scholar
  20. 20.
    Nguyen C, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.CrossRefGoogle Scholar
  21. 21.
    He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50(11–12):2272–81.CrossRefGoogle Scholar
  22. 22.
    Atashrouz S, Pazuki G, Alimoradi Y. Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilib. 2014;372:43–8.CrossRefGoogle Scholar
  23. 23.
    Ghasemi S, Karimipour A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng. 2017;10:1639–48.Google Scholar
  24. 24.
    Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. 1993;7:227–33.CrossRefGoogle Scholar
  25. 25.
    Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Inte Nano Lett. 2014;4(4):109–20.CrossRefGoogle Scholar
  26. 26.
    Namburu P, Kulkarni D, Dandekar A, Das D. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2007;2(3):67–71.CrossRefGoogle Scholar
  27. 27.
    Nguyen C, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, et al. Viscosity data for Al2O3–water nanofluid—hysteresis: Is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47(2):103–11.CrossRefGoogle Scholar
  28. 28.
    Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):133108.CrossRefGoogle Scholar
  29. 29.
    Sundar LS, Singh MK, Sousa AC. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7–14.CrossRefGoogle Scholar
  30. 30.
    Yu W, Xie H, Chen L, Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491(1):92–6.CrossRefGoogle Scholar
  31. 31.
    Zadeh AD, Toghraie D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim. 2018;131:1449–61.CrossRefGoogle Scholar
  32. 32.
    Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46(5):851–62.CrossRefGoogle Scholar
  33. 33.
    Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39(8–9):775–84.CrossRefGoogle Scholar
  34. 34.
    Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33(4):706–14.CrossRefGoogle Scholar
  35. 35.
    Chevalier J, Tillement O, Ayela F. Rheological properties of nanofluids flowing through microchannels. Appl Phys Lett. 2007;91(23):233103.CrossRefGoogle Scholar
  36. 36.
    Schmidt AJ, Chiesa M, Torchinsky DH, Johnson JA, Boustani A, McKinley GH, et al. Experimental investigation of nanofluid shear and longitudinal viscosities. Appl Phys Lett. 2008;92(24):244107.CrossRefGoogle Scholar
  37. 37.
    Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34(2):210–6.CrossRefGoogle Scholar
  38. 38.
    Andrade EdC. A theory of the viscosity of liquids—part II. Lond Edinb Dublin Philos Mag J Sci. 1934;17(113):698–732.CrossRefGoogle Scholar
  39. 39.
    Thomas S, Sobhan CBP. A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett. 2011;6(1):377.CrossRefGoogle Scholar
  40. 40.
    Goharshadi EK, Hadadian M. Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles. Ceram Int. 2012;38(3):1771–7.CrossRefGoogle Scholar
  41. 41.
    Pastoriza-Gallego M, Casanova C, Legido JA, Piñeiro M. CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib. 2011;300(1–2):188–96.CrossRefGoogle Scholar
  42. 42.
    Sundar LS, Singh MK, Sousa AC. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer. 2013;44:7–14.CrossRefGoogle Scholar
  43. 43.
    Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transfer. 2018;92:90–9.CrossRefGoogle Scholar
  44. 44.
    Darvanjooghi MHK, Pahlevaninezhad M, Abdollahi A, Davoodi SM. Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4–water nanofluid. AIChE J. 2017;63(6):2176–86.CrossRefGoogle Scholar
  45. 45.
    Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.CrossRefGoogle Scholar
  46. 46.
    Treybal RE. Mass transfer operations. New York: McGraw-Hill Book Company; 1980.Google Scholar
  47. 47.
    Teng T-P, Hung Y-H, Teng T-C, Mo H-E, Hsu H-G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30(14):2213–8.CrossRefGoogle Scholar
  48. 48.
    Esmaeili Faraj SH, Nasr Esfahany M, Jafari-Asl M, Etesami N. Hydrogen sulfide bubble absorption enhancement in water-based nanofluids. Ind Eng Chem Res. 2014;53(43):16851–8.CrossRefGoogle Scholar
  49. 49.
    Esmaeili-Faraj SH, Nasr Esfahany M. Absorption of hydrogen sulfide and carbon dioxide in water based nanofluids. Ind Eng Chem Res. 2016;55(16):4682–90.CrossRefGoogle Scholar
  50. 50.
    W-g Kim, Kang HU, Jung K-m, Kim SH. Synthesis of silica nanofluid and application to CO2 absorption. Sep Sci Technol. 2008;43(11–12):3036–55.Google Scholar
  51. 51.
    Darvanjooghi MHK, Esfahany MN, Faraj SHE. Investigation of the effects of nanoparticle size on CO2 absorption by silica–water nanofluid. Sep Purif Technol. 2017.  https://doi.org/10.1016/j.seppur.2017.12.020.Google Scholar
  52. 52.
    Koo J, Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transfer. 2005;32(9):1111–8.CrossRefGoogle Scholar
  53. 53.
    Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80.CrossRefGoogle Scholar
  54. 54.
    Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322(24):3895–901.CrossRefGoogle Scholar
  55. 55.
    Karimi-Nazarabad M, Goharshadi EK, Entezari MH, Nancarrow P. Rheological properties of the nanofluids of tungsten oxide nanoparticles in ethylene glycol and glycerol. Microfluid Nanofluid. 2015;19(5):1191–202.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Yaghoub Dehghani
    • 1
  • Ali Abdollahi
    • 1
    Email author
  • Arash Karimipour
    • 1
  1. 1.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations