Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2157–2170 | Cite as

Calorimetric and FTIR study of selected aliphatic octanols

  • Paulo B. P. Serra
  • Ivan Krakovský
  • Michal Fulem
  • Květoslav Růžička
Article
  • 114 Downloads

Abstract

Isobaric heat capacities of ten selected aliphatic octanols (3-octanol, CAS RN: 589-98-0; 2,2,4-trimethyl-3-pentanol, CAS RN: 5162-48-1; 2,2-dimethyl-3-hexanol, CAS RN: 4209-90-9; 2,3-dimethyl-3-hexanol, CAS RN: 4166-46-5; 2,4-dimethyl-3-hexanol, CAS RN: 13432-25-2; 2,5-dimethyl-3-hexanol, CAS RN: 19550-07-3; 3,5-dimethyl-3-hexanol, CAS RN: 4209-91-0; 4-ethyl-3-hexanol, CAS RN: 19780-44-0; 3-methyl-4-heptanol, CAS RN: 1838-73-9; 4-methyl-4-heptanol, CAS RN: 598-01-6) were measured with a Tian–Calvet calorimeter in the temperature range from 257 to 358 K; this temperature range was extended up to 423 K with a heat-flux DSC. For all studied compounds, a maximum on temperature dependence of heat capacity was observed; this feature was corroborated by FTIR spectroscopy performed from 303 K to a maximum of 463 K. Such maxima are related to disintegration of oligomers kept together by hydrogen bonds. The role of steric hindrance on hydrogen bonding is discussed. It is apparent that temperature of maxima is very sensitive to steric hindrance; however, further effort is required for full understanding of hydrogen bonding in aliphatic octanols.

Keywords

Aliphatic octanols Heat capacity Liquid phase Temperature correlation Hydrogen bonding IR spectroscopy 

Notes

Acknowledgements

Paulo B. P. Serra acknowledges financial support from specific university research (MSMT No. 20-SVV/2017). The authors acknowledge financial support from the Czech Science Foundation (GACR No. 17-03875S).

Supplementary material

10973_2018_7382_MOESM1_ESM.pdf (212 kb)
Online Resource contains (i) Description of calorimeters SETARAM µDSC IIIa and Thermal Analysis Q1000; (ii) Tables S1 and S2 containing experimental heat capacities measured in the frame of this work; (iii) Thermograms for phase behavior experiments (Figs. S1–S4); (iv) Comparison of experimental heat capacities with those obtained by estimation methods (Fig. S5) (PDF 212 kb)

References

  1. 1.
    Zábranský M, Růžička V, Majer V, Domalski ES. Heat capacity of liquids. Critical review and recommended values. Washington: American Chemical Society; 1996.Google Scholar
  2. 2.
    Zábranský M, Růžička V. Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment. J Phys Chem Ref Data. 2004;33(4):1071–81.  https://doi.org/10.1063/1.1797811.CrossRefGoogle Scholar
  3. 3.
    Kolská Z, Kukal J, Zábranský M, Růžička V. Estimation of the heat capacity of organic liquids as a function of temperature by a three-level group contribution method. Ind Eng Chem Res. 2008;47(6):2075–85.  https://doi.org/10.1021/ie071228z.CrossRefGoogle Scholar
  4. 4.
    Růžička K, Fulem M, Serra PBP, Vlk O, Krakovský I. Heat capacities of selected cycloalcohols. Thermochim Acta. 2014;596(1):98–108.  https://doi.org/10.1016/j.tca.2014.10.002.CrossRefGoogle Scholar
  5. 5.
    Straka M, Růžička K, Fulem M. Heat capacities of 2-propenol and selected cyclohexylalcohols. Thermochim Acta. 2014;587(1):67–71.  https://doi.org/10.1016/j.tca.2014.03.043.CrossRefGoogle Scholar
  6. 6.
    Serra PBP, Růžička K, Fulem M, Vlk O, Krakovský I. Calorimetric and FTIR study of selected aliphatic heptanols. Fluid Phase Equilib. 2016;423:43–54.  https://doi.org/10.1016/j.fluid.2016.04.003.CrossRefGoogle Scholar
  7. 7.
    Zábranský M, Bureš M, Růžička V Jr. Types of curves for the temperature dependence of the heat capacity of pure liquids. Thermochim Acta. 1993;215:25–45.  https://doi.org/10.1016/0040-6031(93)80080-t.CrossRefGoogle Scholar
  8. 8.
    Steele WV, Chirico RD, Knipmeyer SE, Nguyen A. Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene (+/−)-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane. J Chem Eng Data. 1997;42(6):1021–36.  https://doi.org/10.1021/je9701036.CrossRefGoogle Scholar
  9. 9.
    Fulem M, Růžička K, Růžička V. Heat capacities of alkanols: part I. Selected 1-alkanols C2 to C10 at elevated temperatures and pressures. Thermochim Acta. 2002;382(1–2):119–28.  https://doi.org/10.1016/S0040-6031(01)00745-6.CrossRefGoogle Scholar
  10. 10.
    Cerdeiriña CA, González-Salgado D, Romaní L, Delgado MD, Torres LA, Costas M. Towards an understanding of the heat capacity of liquids. A simple two-state model for molecular association. J Chem Phys. 2004;120(14):6648–59.  https://doi.org/10.1063/1.1667469.CrossRefPubMedGoogle Scholar
  11. 11.
    Cerdeiriña CA, Troncoso J, González-Salgado D, García-Miaja G, Hernández-Segura GO, Bessiéres D, et al. Heat capacity of associated systems. Experimental data and application of a two-state model to pure liquids and mixtures. J Phys Chem B. 2007;111(5):1119–28.  https://doi.org/10.1021/jp0640272.CrossRefPubMedGoogle Scholar
  12. 12.
    Suzuki YT, Yamamura Y, Sumita M, Yasuzuka S, Saito K. Neat liquid consisting of hydrogen-bonded tetramers: dicyclohexylmethanol. J Phys Chem B. 2009;113(30):10077–80.  https://doi.org/10.1021/jp9048764.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamamura Y, Suzuki YT, Sumita M, Saito K. Calorimetric study of glass transition in molecular liquids consisting of globular associates: dicyclorohexylmethanol and tricyclohexylmethanol. J Phys Chem B. 2012;116(13):3938–43.  https://doi.org/10.1021/jp210809j.CrossRefPubMedGoogle Scholar
  14. 14.
    Nagatomo S, Nobuhira M, Yamamura Y, Sumita M, Saito K. Identification of hydrogen-bonded oligomers in associating liquid by 1H NMR: 1-Phenyl-1-cyclohexanol. Bull Chem Soc Jpn. 2013;86(5):569–76.  https://doi.org/10.1246/bcsj.20120322.CrossRefGoogle Scholar
  15. 15.
    van Miltenburg JC, Gabrielová H, Růžička K. Heat capacities and derived thermodynamic functions of 1-Hexanol, 1-Heptanol, 1-octanol, and 1-decanol between 5 and 390 K. J Chem Eng Data. 2003;48(5):1323–31.  https://doi.org/10.1021/je0340856.CrossRefGoogle Scholar
  16. 16.
    Růžička K, Fulem M, Růžička V, Zábranský M. Heat capacities of alkanols III. Some 1-alkanols from C10 to C20. Thermochim Acta. 2004;421(1–2):35–41.  https://doi.org/10.1016/j.tca.2004.02.023.CrossRefGoogle Scholar
  17. 17.
    Dannhauser W. Dielectric study of intermolecular association in isomeric octyl alcohols. J Chem Phys. 1968;48(5):1911–7.  https://doi.org/10.1063/1.1668989.CrossRefGoogle Scholar
  18. 18.
    Shinomiya T. Dielectric relaxation and intermolecular association for various secondary and tertiary alcohols. Bull Chem Soc Jpn. 1989;62(11):3636–42.  https://doi.org/10.1246/bcsj.62.3636.CrossRefGoogle Scholar
  19. 19.
    Huelsekopf M, Ludwig R. Temperature dependence of hydrogen bonding in alcohols. J Mol Liq. 2000;85(1–2):105–25.  https://doi.org/10.1016/S0167-7322(99)00168-3.CrossRefGoogle Scholar
  20. 20.
    Czarnecki MA. Two-dimensional correlation analysis of hydrogen-bonded systems: basic molecules. Appl Spectrosc Rev. 2011;46(1):67–103.  https://doi.org/10.1080/05704928.2010.503529.CrossRefGoogle Scholar
  21. 21.
    Palombo F, Sassi P, Paolantoni M, Morresi A, Cataliotti RS. Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques. J Phys Chem B. 2006;110(36):18017–25.  https://doi.org/10.1021/jp062614h.CrossRefPubMedGoogle Scholar
  22. 22.
    Benson SW. Some observations on the structures of liquid alcohols and their heats of vaporization. J Am Chem Soc. 1996;118(43):10645–9.  https://doi.org/10.1021/ja962101w.CrossRefGoogle Scholar
  23. 23.
    Golub P, Doroshenko I, Pogorelov V. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols. Phys Lett A. 2014;378(28–29):1937–44.  https://doi.org/10.1016/j.physleta.2014.04.032.CrossRefGoogle Scholar
  24. 24.
    Ludwig R. The effect of hydrogen bonding on the thermodynamic and spectroscopic properties of molecular clusters and liquids. Phys Chem Chem Phys. 2002;4(22):5481–7.  https://doi.org/10.1039/B207000F.CrossRefGoogle Scholar
  25. 25.
    Stubbs JM, Siepmann JI. Elucidating the vibrational spectra of hydrogen-bonded aggregates in solution: electronic structure calculations with implicit solvent and first-principles molecular dynamics simulations with explicit solvent for 1-Hexanol in n-Hexane. J Am Chem Soc. 2005;127(13):4722–9.  https://doi.org/10.1021/ja044380q.CrossRefPubMedGoogle Scholar
  26. 26.
    Paolantoni M, Sassi P, Morresi A, Cataliotti RS. Raman noncoincidence effect on OH stretching profiles in liquid alcohols. J Raman Spectrosc. 2006;37(4):528–37.  https://doi.org/10.1002/jrs.1427.CrossRefGoogle Scholar
  27. 27.
    Kiefer J, Wagenfeld S, Kerlé D. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;189:57–65.  https://doi.org/10.1016/j.saa.2017.07.061.CrossRefGoogle Scholar
  28. 28.
    Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Berlin: Springer; 2003.CrossRefGoogle Scholar
  29. 29.
    Štejfa V, Fulem M, Růžička K, Červinka C. Thermodynamic study of selected monoterpenes III. J Chem Thermodyn. 2014;79:280–9.  https://doi.org/10.1016/j.jct.2014.04.022.CrossRefGoogle Scholar
  30. 30.
    Hoge HJ. Heat capacity of a 2-phase system, with applications to vapor corrections in calorimetry. J Res Natl Bur Stand. 1946;36(2):111–8.  https://doi.org/10.6028/jres.036.003.CrossRefGoogle Scholar
  31. 31.
    Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331(2):93–204.  https://doi.org/10.1016/S0040-6031(99)00009-X.CrossRefGoogle Scholar
  32. 32.
    Mohr PJ, Newell DB, Taylor BN. CODATA recommended values of the fundamental physical constants: 2014. J Phys Chem Ref Data. 2016;45(4):043102.  https://doi.org/10.1063/1.4954402.CrossRefGoogle Scholar
  33. 33.
    Cline JK, Andrews DH. Thermal energy studies. III. The octanols. J Am Chem Soc. 1931;53(10):3668–73.  https://doi.org/10.1021/ja01361a009.CrossRefGoogle Scholar
  34. 34.
    Verevkin SP, Schick C. Vapour pressures and heat capacity measurements on the C7–C9 secondary aliphatic alcohols. J Chem Thermodyn. 2007;39(5):758–66.  https://doi.org/10.1016/j.jct.2006.10.007.CrossRefGoogle Scholar
  35. 35.
    Zábranský M, Kolská Z, Růžička V, Domalski ES. Heat capacity of liquids: critical review and recommended values. Supplement II J Phys Chem Ref Data. 2010;39(1):013103-1/13103-404. doi: https://doi.org/10.1063/1.3182831.CrossRefGoogle Scholar
  36. 36.
    Smith FA, Creitz EC. Infrared studies of association in eleven alcohols. J Res Natl Bur Stand. 1951;46(2):145–64.  https://doi.org/10.6028/jres.046.021.CrossRefGoogle Scholar
  37. 37.
    Dorough GL, Glass HB, Gresham TL, Malone GB, Reid EE. Structure—property relationships in some isomeric octanols. J Am Chem Soc. 1941;63(11):3100–10.  https://doi.org/10.1021/ja01856a064.CrossRefGoogle Scholar
  38. 38.
    Serra PBP, Rocha MAA, Rathke B, Růžička K, Fulem M, Kiefer J. Infrared spectroscopy of the symmetric branched isomers of n-heptanol. J Mol Liq. 2017;244(Suppl C):528–32.  https://doi.org/10.1016/j.molliq.2017.09.023.CrossRefGoogle Scholar
  39. 39.
    Štejfa V, Fulem M, Růžička K, Matějka P. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol. Fluid Phase Equilib. 2015;402:18–29.  https://doi.org/10.1016/j.fluid.2015.05.026.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Physical ChemistryUniversity of Chemistry and TechnologyPragueCzech Republic
  2. 2.Department of Macromolecular Physics, Faculty of Mathematics and PhysicsCharles University in PraguePraha 2Czech Republic

Personalised recommendations