Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 3, pp 1617–1627 | Cite as

Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle

  • Z. SheikholeslamiEmail author
  • D. Yousefi Kebria
  • F. Qaderi
Article

Abstract

Among different methods for produced water treatment, photocatalytic process is an alternative and innovative technology that is more used in water treatment. In this work BTEX was used as an indicator of produced water. γ-Fe2O3 nanoparticles have been synthesized via co-precipitation methods. XRD, DRS, FTIR and SEM techniques have been employed for detecting the particle size, morphology, different functional groups, the optical absorption characteristics and the crystal structure of the synthesized nanoparticle. Experimental tests were designed by the OFAT method. The effective ranges of the main factors on the photocatalytic degradation of BTEX including pH (3–7), catalyst concentration (0–250 mg L−1), UV light intensity (0–100 W) and visible light intensity (0–225 W) were obtained. When maghemite nanoparticles are under visible light and UV light, the best removal efficiency achieved 95% in 5 days and 97% in 90 min, respectively. In addition the photocatalytic process, adsorption and photolysis process of maghemite nanoparticles were studied.

Keywords

Nanoparticles BTEX Photocatalysis Produced water γ-Fe2O3 Ultraviolet Visible light 

References

  1. 1.
    Veil JA, Puder MG, Elcock D, Redweik RJ Jr. A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Lemont: Argonne National Lab; 2004.CrossRefGoogle Scholar
  2. 2.
    Lee K, Neff J. Produced water: environmental risks and advances in mitigation technologies. Berlin: Springer; 2011.CrossRefGoogle Scholar
  3. 3.
    Akmirza I, Pascual C, Carvajal A, Pérez R, Muñoz R, Lebrero R. Anoxic biodegradation of BTEX in a biotrickling filter. Sci Total Environ. 2017;587:457–65.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lu J, Wang X, Shan B, Li X, Wang W. Analysis of chemical compositions contributable to chemical oxygen demand (COD) of oilfield produced water. Chemosphere. 2006;62:322–31.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jiménez S, Micó MM, Arnaldos M, Medina F, Contreras S. State of the art of produced water treatment. Chemosphere. 2018;192:186–208.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. New perspectives for advanced oxidation processes. J Environ Manag. 2017;195:93–9.CrossRefGoogle Scholar
  7. 7.
    Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44:2997–3027.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428–48.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nasiri H, Yaghoub M, Jamalabadi A, Sadeghi R, Safaei MR, Nguyen TK, Safdari Shadloo M. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows: application to forced convection heat transfer over a horizontal cylinder. J Therm Anal Calorim. 2018. Accepted for publication.Google Scholar
  10. 10.
    Heydari A, Akbari OA, Safaei MR, Derakhshani M, Abdullah AAA, Alrashed R Mashayekhi, Sheikh Shabani GA, Zarringhalam M, Khang Nguyen T. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.CrossRefGoogle Scholar
  11. 11.
    Yan L, Xu Z, Zhang J. Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. J Therm Anal Calorim. 2017;130:1987–96.CrossRefGoogle Scholar
  12. 12.
    Safaei MR, Ahmadi G, Goodarzi MS, Kamyar A, Kazi SN. Boundary layer flow and heat transfer of FMWCNT/water nanofluids over a flat plate. Fluids. 2016;1(4):31.  https://doi.org/10.3390/fluids1040031.CrossRefGoogle Scholar
  13. 13.
    Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.CrossRefGoogle Scholar
  14. 14.
    Arania AAA, Akbari OA, Safaeic MR, Marzban A, Alrashed AA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.CrossRefGoogle Scholar
  15. 15.
    Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.CrossRefGoogle Scholar
  17. 17.
    Liu B, Chen B, Zhang B. Oily wastewater treatment by nano-TiO2-induced photocatalysis: seeking more efficient and feasible solutions. IEEE Nanatechnol Mag. 2017;11:4–15.CrossRefGoogle Scholar
  18. 18.
    Byrne C, Subramanian G, Pillai SC. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng. 2017.  https://doi.org/10.1016/j.jece.2017.07.080.CrossRefGoogle Scholar
  19. 19.
    Lu M. Photocatalysis and water purification: from fundamentals to recent applications. Hoboken: Wiley; 2013.Google Scholar
  20. 20.
    Darezereshki E. Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater Lett. 2010;64:1471–2.CrossRefGoogle Scholar
  21. 21.
    Ali K, Sarfraz A, Mirza IM, Bahadur A, Iqbal S, ul Haq A. Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr Appl Phys. 2015;15:925–9.CrossRefGoogle Scholar
  22. 22.
    Darezereshki E, Ranjbar M, Bakhtiari F. One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method. J Alloy Compd. 2010;502:257–60.CrossRefGoogle Scholar
  23. 23.
    Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Sci & Eng Int J. 2017;1:00018.CrossRefGoogle Scholar
  24. 24.
    Hamad HA, Sadik WA, Abd El-latif MM, Kashyout AB, Feteha MY. Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles. J Environ Sci. 2016;43:26–39.CrossRefGoogle Scholar
  25. 25.
    Majidnia Z, Idris A. Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads. J Taiwan Inst Chem Eng. 2015;54:137–44.CrossRefGoogle Scholar
  26. 26.
    Wang J, Shao X, Zhang Q, Tian G, Ji X, Bao W. Preparation of mesoporous magnetic Fe2O3 nanoparticle and its application for organic dyes removal. J Mol Liq. 2017;248:13–8.CrossRefGoogle Scholar
  27. 27.
    Majidnia Z, Fulazzaky MA. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution. J Environ Manag. 2017;191:219–27.CrossRefGoogle Scholar
  28. 28.
    Majidnia Z, Idris A, Majid M, Zin R, Ponraj M. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads. Appl Radiat Isot. 2015;105:105–13.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roushenas P, Yusop Z, Majidnia Z, Nasrollahpour R. Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles. Desalin Water Treat. 2016;57:5837–41.CrossRefGoogle Scholar
  30. 30.
    Shahrezaei F, Mansouri Y, Zinatizadeh AAL, Akhbari A. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO 2 nanoparticles. Powder Technol. 2012;221:203–12.CrossRefGoogle Scholar
  31. 31.
    Saien J, Nejati H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater. 2007;148:491–5.CrossRefGoogle Scholar
  32. 32.
    Vargas R, Núñez O. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Sol Energy. 2010;84:345–51.CrossRefGoogle Scholar
  33. 33.
    Sangkhun W, Laokiat L, Tanboonchuy V, Khamdahsag P, Grisdanurak N. Photocatalytic degradation of BTEX using W-doped TiO 2 immobilized on fiberglass cloth under visible light. Superlattices Microstruct. 2012;52:632–42.CrossRefGoogle Scholar
  34. 34.
    Yang X, Cai H, Bao M, Yu J, Lu J, Li Y. Highly efficient photocatalytic remediation of simulated polycyclic aromatic hydrocarbons (PAHs) contaminated wastewater under visible light irradiation by graphene oxide enwrapped Ag3PO4 composite. Chin J Chem. 2017;35:1549–58.CrossRefGoogle Scholar
  35. 35.
    McQueen AD, Kinley CM, Kiekhaefer RL, Calomeni AJ, Rodgers JH, Castle JW. Photocatalysis of a commercial naphthenic acid in water using fixed-film TiO2. Water Air Soil Pollut. 2016;227:132.CrossRefGoogle Scholar
  36. 36.
    Liu B, Chen B, Zhang B, Zheng J, Jing L. Toxicity and biodegradability study on enhanced photocatalytic oxidation of polycyclic aromatic hydrocarbons in offshore produced water. Canadian Society of Civil Engineering Annu. General Conf, Vancouver, Canada, 2017.Google Scholar
  37. 37.
    Hernández-Ramírez A, Medina-Ramírez I. Photocatalytic semiconductors. Berlin: Springer; 2016.Google Scholar
  38. 38.
    Bina B, Amin MM, Rashidi A, Pourzamani H. Water and wastewater treatment from BTEX by carbon nanotubes and Nano-Fe. Water Resour. 2014;41:719–27.CrossRefGoogle Scholar
  39. 39.
    A.P.H. Association, A.W.W. Association, A.W.W. Association, W.P.C. Federation, W.E. Federation. Standard methods for the examination of water and wastewater. Washington: American Public Health Association; 1915.Google Scholar
  40. 40.
    Watanabe H, Seto JE. The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3. Bull Chem Soc Jpn. 1986;59:2683–7.CrossRefGoogle Scholar
  41. 41.
    Duarte-Davidson R, Courage C, Rushton L, Levy L. Benzene in the environment: an assessment of the potential risks to the health of the population. Occup Environ Med. 2001;58:2–13.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Omar K, Aziz N, Amr S, Palaniandy P. Removal of lindane and Escherichia coli (E coli) from rainwater using photocatalytic and adsorption treatment processes. Glob Nest J. 2017;19:191–8.CrossRefGoogle Scholar
  43. 43.
    Dutta AK, Maji SK, Adhikary B. γ-Fe 2 O 3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull. 2014;49:28–34.CrossRefGoogle Scholar
  44. 44.
    Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A. 2003;157:111–6.CrossRefGoogle Scholar
  45. 45.
    Ahmed S, Rasul M, Martens WN, Brown R, Hashib M. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination. 2010;261:3–18.CrossRefGoogle Scholar
  46. 46.
    Ba-Abbad MM, Takriff MS, Said M, Benamor A, Nasser MS, Mohammad AW. Photocatalytic degradation of pentachlorophenol using ZnO nanoparticles: study of intermediates and toxicity. Int J Environ Res. 2017;11:1–13.CrossRefGoogle Scholar
  47. 47.
    Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ. 2018;627:1253–63.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kondrakov A, Ignatev A, Frimmel F, Bräse S, Horn H, Revelsky A. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Appl Catal B. 2014;160:106–14.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Z. Sheikholeslami
    • 1
    Email author
  • D. Yousefi Kebria
    • 1
  • F. Qaderi
    • 1
  1. 1.Department of Civil EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations