Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 751–762 | Cite as

Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method

  • Tong-Miin LiouEmail author
  • Tzu-Chiao Wei
  • Chun-Sheng Wang
Article

Abstract

Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al2O3/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al2O3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (Nu) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.

Keywords

Nanofluids Louver microstructures Microchannel Heat transfer Lattice Boltzmann method 

List of symbols

\(\varvec{c}_{\text{k}}\)

Discrete lattice velocity vectors

cp

Specific heat capacity (J kg−1 K−1)

cs

Dimensionless speed of sound

d

Particle diameter (m)

Dh

Hydraulic diameter, 2H (m)

f

Fanning friction factor

\(\bar{f}\)

Average Fanning friction factor

f0

Fanning friction factor for the fully developed laminar flow in two-dimensional smooth channel

fk

Distribution function for velocity

feq

Equilibrium distribution function for velocity

gk

Distribution function for energy

gkeq

Equilibrium distribution function for velocity

H

Height of channel (m)

Hs

Height of louver microstructures (m)

k

Thermal conductivity (W m−1 K−1)

L

Length of channel (m)

Nu

Nusselt number

\(\overline{Nu}\)

Average Nusselt number

\(Nu_{0}\)

Nusselt number for the fully developed laminar flow in two-dimensional smooth channel

\(P\)

Pressure (Pa)

Pr

Prandtl number = ν/α

Re

Reynolds number = ρfumDh/μf

T

Temperature (K)

TPF

Thermal performance factor

\(\varvec{u}\)

Velocity vector (m s−1)

u

Streamwise velocity component (m s−1)

v

Transverse velocity component (m s−1)

wk

Weighting factors

\(\varvec{x}\)

Position lattice vectors (m)

x

Streamwise coordinate (m)

y

Transverse coordinate (m)

\(X^{*}\)

Dimensionless coordinates (x/Dh)

\(Y^{*}\)

Dimensionless coordinates (y/Dh)

Greek symbols

α

Thermal diffusion coefficient (m2 s−1)

μ

Dynamic viscosity (kg m−1 s−1)

ν

Kinematic viscosity (m2 s−1)

ρ

Density (kg m−3)

τν

Dimensionless relaxation time for fk

τc

Dimensionless relaxation time for gk

ϕ

Particle volume fraction

Subscripts

bf

Base fluid

in

Inlet

m

Mean

nf

Nanofluid

out

Outlet

p

Particle

w

Wall

Notes

Acknowledgements

The present study is sponsored by the Ministry of Science and Technology of Taiwan under Contract: MOST105-2221-E-007-058-MY3. The National Center for High-performance Computing is also acknowledged for providing computer resources.

References

  1. 1.
    Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.CrossRefGoogle Scholar
  2. 2.
    Webb BW, Ramadhyani S. Conjugate heat transfer in a channel with staggered ribs. Int J Heat Mass Transf. 1985;28(9):1679–87.CrossRefGoogle Scholar
  3. 3.
    Croce G, D’agaro P, Nonino C. Three-dimensional roughness effect on microchannel heat transfer and pressure drop. Int J Heat Mass Transf. 2007;50(25):5249–59.CrossRefGoogle Scholar
  4. 4.
    Desrues T, Marty P, Fourmigué JF. Numerical prediction of heat transfer and pressure drop in three-dimensional channels with alternated opposed ribs. Appl Therm Eng. 2012;45:52–63.CrossRefGoogle Scholar
  5. 5.
    Rahman MM, Injeti P. Heat transfer in microtube or microchannel with protrusions. Front Heat Mass Transf. 2011;2(1):013003.CrossRefGoogle Scholar
  6. 6.
    Chai L, Xia GD, Wang HS. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl Therm Eng. 2016;92:32–41.CrossRefGoogle Scholar
  7. 7.
    Liu Y, Cui J, Li W, Zhang N. Effect of surface microstructure on microchannel heat transfer performance. J Heat Transf. 2011;133:124501.CrossRefGoogle Scholar
  8. 8.
    Gong L, Kota K, Tao W, Joshi Y. Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J. Heat Transf. 2011;133(5):051702-1–-10.CrossRefGoogle Scholar
  9. 9.
    Ghaedamini H, Lee PS, Teo CJ. Developing forced convection in converging–diverging microchannels. Int J Heat Mass Transf. 2013;65:491–9.CrossRefGoogle Scholar
  10. 10.
    Patankar SV, Liu CH, Sparrow EM. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J Heat Transf. 1977;99(2):180–6.CrossRefGoogle Scholar
  11. 11.
    Kelkar KM, Patankar SV. Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins. J Heat Transf. 1987;109(1):25–30.CrossRefGoogle Scholar
  12. 12.
    Cheng CH, Hung WH. Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays. Int J Heat Mass Transf. 1991;34(11):2739–49.CrossRefGoogle Scholar
  13. 13.
    Mousavi SS, Hooman K. Heat and fluid flow in entrance region of a channel with staggered baffles. Energy Convers Manag. 2006;47(15):2011–9.CrossRefGoogle Scholar
  14. 14.
    Liu C, Teng JT, Chu JC, Chiu YL, Huang S, Jin S, Pan HH. Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Int J Heat Mass Transf. 2011;54(13):3069–80.CrossRefGoogle Scholar
  15. 15.
    Ebrahimi A, Roohi E, Kheradmand S. Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Appl Therm Eng. 2015;78:576–83.CrossRefGoogle Scholar
  16. 16.
    Sripattanapipat S, Promvonge P. Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles. Int Commun Heat Mass Transf. 2009;36(1):32–8.CrossRefGoogle Scholar
  17. 17.
    Saidur R, Leong KY, Mohammad H. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.CrossRefGoogle Scholar
  18. 18.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: International Mechanical Engineering Congress and Exhibition; 1995. p. 99–106.Google Scholar
  19. 19.
    Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.CrossRefGoogle Scholar
  20. 20.
    Li J, Li Z, Wang B. Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Sci Technol. 2002;7(2):198–201.Google Scholar
  21. 21.
    Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71.CrossRefGoogle Scholar
  22. 22.
    Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):153107.CrossRefGoogle Scholar
  23. 23.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.CrossRefGoogle Scholar
  24. 24.
    Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.CrossRefGoogle Scholar
  25. 25.
    Yang YT, Lai FH. Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method. Int Commun Heat Mass Transf. 2011;38(5):607–14.CrossRefGoogle Scholar
  26. 26.
    Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53.Google Scholar
  27. 27.
    Ghale ZY, Haghshenasfard M, Esfahany MN. Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. Int Commun Heat Mass Transf. 2015;68:122–9.CrossRefGoogle Scholar
  28. 28.
    Liou TM, Wang CS. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method. Phys Fluids. 2018;30(1):015106.CrossRefGoogle Scholar
  29. 29.
    Raghuraman DRS, Raj RTK, Nagarajan PK, Rao BVA. Influence of aspect ratio on the thermal performance of rectangular shaped micro channel heat sink using CFD code. Alexandria Eng J. 2017;56(1):43–54.CrossRefGoogle Scholar
  30. 30.
    Aparecido JB, Cotta RM. Thermally developing laminar flow inside rectangular ducts. Int J Heat Mass Transf. 1990;33(2):341–7.CrossRefGoogle Scholar
  31. 31.
    Qian YH, D’Humières D, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17(6):479.CrossRefGoogle Scholar
  32. 32.
    Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.CrossRefGoogle Scholar
  33. 33.
    Incropera FP. Liquid cooling of electronic devices by single-phase convection. Hoboken: Wiley-Interscience; 1999.Google Scholar
  34. 34.
    Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48(8):1486–93.CrossRefGoogle Scholar
  35. 35.
    Bergman TL, Incropera FP. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.Google Scholar
  36. 36.
    Bejan A. Convection heat transfer. Hoboken: Wiley; 2013.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations