Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 123–132 | Cite as

Study on convective heat transfer and pressure drop of MWCNTs/water nanofluid in mini-tube

  • Ahmed A. HussienEmail author
  • Nadiahnor Md Yusop
  • Mohd Z. Abdullah
  • Moh’d A. Al-Nimr
  • Mehrnoush Khavarian


In recent times, the use of multi-walled carbon nanotubes (MWCNTs)/water nanofluids as a coolant has garnered immense interest due to their high thermal conductivity. Thus, this study investigates the effect of different mass fractions (\(\varphi_{\text{w }}\)) of MWCNTs (0.075, 0.125 and 0.25 mass%) on forced convection heat transfer. Uniform and stable nanofluids were prepared using the two-step method coupled with the addition of water-soluble polymer polyvinyl pyrrolidone (PVP) and using high-power probe sonicator. The test was carried out in a circular mini-tube (Din = 1.1 mm), which was heated uniformly to study the developing and fully developed laminar flow. The Reynolds number (Re) varied from 200 to 500. The heat transfer coefficient was found to be significantly enhanced with increase in mass fraction of MWCNTs in the prepared nanofluid. The maximum enhancement of heat transfer coefficient was 23.9% for the nanofluid prepared with 0.25 mass% of MWCNTs. The experimental result revealed an increase in friction factor using the MWCNTs/water nanofluid. A maximum pressure drop of 9.9% was achieved for the highest mass fraction of MWCNTs.


MWCNTs Nanofluids Heat transfer coefficient Nusselt number Thermophysical properties 



The first author would like to thank to Universiti Sains Malaysia fellowship for financial support to this article.


  1. 1.
    Hussien AA, Abdullah MZ, Moh’d AA-N. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: theory and applications. Appl Energy. 2016;164:733–55.Google Scholar
  2. 2.
    Ganvir R, Walke P, Kriplani V. Heat transfer characteristics in nanofluid: a review. Renew Sustain Energy Rev. 2017;75:451–60.Google Scholar
  3. 3.
    Hwang Y, Ahn Y, Shin H, Lee C, Kim G, Park H, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6(6):1068–71.Google Scholar
  4. 4.
    Pradhan N, Duan H, Liang J, Iannacchione G. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology. 2009;20(24):245705.Google Scholar
  5. 5.
    Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.Google Scholar
  6. 6.
    Yazid MNAWM, Sidik NAC, Yahya WJ. Heat and mass transfer characteristics of carbon nanotube nanofluids: a review. Renew Sustain Energy Rev. 2017;80:914–41.Google Scholar
  7. 7.
    Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6(1):229.Google Scholar
  8. 8.
    Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transf. 2016;74:108–13.Google Scholar
  9. 9.
    Indhuja A, Suganthi K, Manikandan S, Rajan K. Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature. J Taiwan Inst Chem Eng. 2013;44(3):474–9.Google Scholar
  10. 10.
    Azmi W, Sharma K, Mamat R, Najafi G, Mohamad M. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:1046–58.Google Scholar
  11. 11.
    Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(01):97–117.Google Scholar
  12. 12.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.Google Scholar
  13. 13.
    Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.Google Scholar
  14. 14.
    Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, et al. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9(1):1–16.Google Scholar
  15. 15.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–9.Google Scholar
  16. 16.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.Google Scholar
  17. 17.
    Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.Google Scholar
  18. 18.
    Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.Google Scholar
  19. 19.
    Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52(21):5090–101.Google Scholar
  20. 20.
    Amrollahi A, Rashidi A, Lotfi R, Meibodi ME, Kashefi K. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transf. 2010;37(6):717–23.Google Scholar
  21. 21.
    Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Thermal Fluid Sci. 2013;44:716–21.Google Scholar
  22. 22.
    Wu Z, Wang L, Sundén B, Wadsö L. Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl Therm Eng. 2016;96:364–71.Google Scholar
  23. 23.
    Sarafraz M, Hormozi F. Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Exp Thermal Fluid Sci. 2016;72:1–11.Google Scholar
  24. 24.
    Hosseinipour E, Heris SZ, Shanbedi M. Experimental investigation of pressure drop and heat transfer performance of amino acid-functionalized MWCNT in the circular tube. J Therm Anal Calorim. 2016;124(1):205–14.Google Scholar
  25. 25.
    Hazbehian M, Mohammadiun M, Maddah H, Alizadeh M. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions. Heat Mass Transf. 2017;53(5):1503–16.Google Scholar
  26. 26.
    Estellé P, Halelfadl S, Maré T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim. 2017;127(3):2075–81.Google Scholar
  27. 27.
    Tuckerman DB, Pease R. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.Google Scholar
  28. 28.
    Khoshvaght-Aliabadi M, Pazdar S, Sartipzadeh O. Experimental investigation of water based nanofluid containing copper nanoparticles across helical microtubes. Int Commun Heat Mass Transf. 2016;70:84–92.Google Scholar
  29. 29.
    Salman B, Mohammed H, Kherbeet AS. Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int Commun Heat Mass Transf. 2014;59:88–100.Google Scholar
  30. 30.
    Nimmagadda R, Venkatasubbaiah K. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transf. 2017;53(6):2099–115.Google Scholar
  31. 31.
    Fadhillahanafi N, Leong K, Risby M. Stability and thermal conductivity characteristics of carbon nanotube based nanofluids. Int J Automot Mech Eng. 2013;8:1376.Google Scholar
  32. 32.
    Sadeghinezhad E, Togun H, Mehrali M, Nejad PS, Latibari ST, Abdulrazzaq T, et al. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int J Heat Mass Transf. 2015;81:41–51.Google Scholar
  33. 33.
    Manivannan S, Jeong IO, Ryu JH, Lee CS, Kim KS, Jang J, et al. Dispersion of single-walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization. J Mater Sci Mater Electron. 2009;20(3):223–9.Google Scholar
  34. 34.
    Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B. 2003;107(26):6292–9.Google Scholar
  35. 35.
    Khavarian M, Chai S-P, Mohamed AR. Direct use of as-synthesized multi-walled carbon nanotubes for carbon dioxide reforming of methane for producing synthesis gas. Chem Eng J. 2014;257:200–8.Google Scholar
  36. 36.
    Duangthongsuk W, Wongwises S. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf. 2008;35(10):1320–6.Google Scholar
  37. 37.
    Ghozatloo A, Azimi Maleki S, Shariaty-Niassar M, Morad RA. Investigation of nanoparticles morphology on viscosity of nanofluids and new correlation for prediction. J Nanostruct. 2015;5(2):161–8.Google Scholar
  38. 38.
    Xie H, Lee H, Youn W, Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys. 2003;94(8):4967–71.Google Scholar
  39. 39.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 2011.Google Scholar
  40. 40.
    Shah R, editor. Thermal entry length solutions for the circular tube and parallel plates. In: Third national heat mass transfer conference, Indian Institute of Technology, Bombay, India; 1975.Google Scholar
  41. 41.
    Taylor J. Introduction to error analysis, the study of uncertainties in physical measurements. Herndon: University Science Books; 1997.Google Scholar
  42. 42.
    Sara O, Barlay Ergu Ö, Arzutug M, Yapıcı S. Experimental study of laminar forced convective mass transfer and pressure drop in microtubes. Int J Therm Sci. 2009;48(10):1894–900.Google Scholar
  43. 43.
    Akhavan-Behabadi M, Shahidi M, Aligoodarz M, Ghazvini M. Experimental investigation on thermo-physical properties and overall performance of MWCNT-water nanofluid flow inside horizontal coiled wire inserted tubes. Heat Mass Transf. 2017;53(1):291–304.Google Scholar
  44. 44.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.Google Scholar
  45. 45.
    Liu D, Yu L. Single-phase thermal transport of nanofluids in a minichannel. J Heat Transf. 2011;133(3):031009.Google Scholar
  46. 46.
    Yang G, Wu J. Conjugate mixed convection in the entrance region of a symmetrically heated vertical channel with thick walls. Int J Therm Sci. 2015;98:245–54.Google Scholar
  47. 47.
    Li Z, He Y-L, Tang G-H, Tao W-Q. Experimental and numerical studies of liquid flow and heat transfer in microtubes. Int J Heat Mass Transf. 2007;50(17):3447–60.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ahmed A. Hussien
    • 1
    Email author
  • Nadiahnor Md Yusop
    • 2
  • Mohd Z. Abdullah
    • 3
  • Moh’d A. Al-Nimr
    • 4
  • Mehrnoush Khavarian
    • 5
  1. 1.School of Mechanical EngineeringUniversiti Sains MalaysiaNibong Tebal, PenangMalaysia
  2. 2.Faculty of Chemical EngineeringUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.School of Aerospace EngineeringUniversiti Sains MalaysiaNibong Tebal, PenangMalaysia
  4. 4.Department of Mechanical EngineeringJordan University of Science and TechnologyIrbidJordan
  5. 5.School of Chemical EngineeringUniversiti Sains MalaysiaNibong Tebal, PenangMalaysia

Personalised recommendations