One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance

Article
  • 31 Downloads

Abstract

Paraffin wax (PW) is a solid–liquid organic phase change material (PCM). However, the low thermal conductivity and poor light–heat conversion performance limit its feasibility in solar thermal storage applications. In this paper, CuS-decorated carboxyl multi-wall carbon nanotubes (MWCNTs)/PW light–heat conversion composite PCMs were prepared by one step. The structure and properties of the composite PCMs were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimeter, thermogravimetric analysis, coefficient of thermal conductivity, UV–visible–near infrared spectrometer and light–heat conversion testing. The results showed that the light–heat conversion performance of CuS–MWCNTs/PW composite PCMs were better than that of MWCNT/PW composite PCMs with the same mass fraction. Therefore, it is expected that this research will open up new avenues of study for the creation of advanced composite PCM with excellent light–heat conversion performance.

Keywords

Phase change material Paraffin wax Thermal conductivity Light–heat conversion performance 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51775510), the Planning Project of Application Research for Public Service Technology of Zhejiang Province (LGG18E060002) and the Key Research and Development Project of Yiwu (2017-Z-09).

References

  1. 1.
    Harikrishnan S, Deenadhayalan M, Kalaiselvam S. Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manag. 2014;86(5):864–72.CrossRefGoogle Scholar
  2. 2.
    Beemkumar N, Karthikeyan A. Experimental analysis of heat transfer characteristics of solar energy based latent heat storage system. Mater Today Proc. 2016;3(6):2475–82.CrossRefGoogle Scholar
  3. 3.
    Fang X, Fan LW, Ding Q, Yao XL, Wu YY, Hou JF, Wang X, Yu ZT, Cheng GH, Hu YC. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag. 2014;80(4):103–9.CrossRefGoogle Scholar
  4. 4.
    Navarro L, Gracia AD, Colclough S, Browne M, Mccormack SJ, Griffths P, Cabeza LF. Thermal energy storage in building integrated thermal systems: a review. Part 1. Active storage systems. Renew Energy. 2016;88:526–47.CrossRefGoogle Scholar
  5. 5.
    Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yilbas BS, Sahin AZ. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:1072–89.CrossRefGoogle Scholar
  6. 6.
    Xu B, Li Z. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material. Appl Energy. 2014;121(5):114–22.CrossRefGoogle Scholar
  7. 7.
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112(4):1357–66.CrossRefGoogle Scholar
  8. 8.
    Zhang N, Yuan YP, Yuan YG, Cao XL, Yang XJ. Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy. 2014;110:64–70.CrossRefGoogle Scholar
  9. 9.
    Zhang P, Ma F, Xiao X. Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system. Appl Energy. 2016;173:255–71.CrossRefGoogle Scholar
  10. 10.
    Yuan YP, Cao XL, Xiang B, Du YN. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Sol Energy. 2016;136:365–78.CrossRefGoogle Scholar
  11. 11.
    Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193–228.CrossRefGoogle Scholar
  12. 12.
    Liu CZ, Rao ZH, Zhao JT, Huo YT, Li YM. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy. 2015;13:814–26.CrossRefGoogle Scholar
  13. 13.
    Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag. 2013;67(3):275–82.CrossRefGoogle Scholar
  14. 14.
    Xu B, Li PW, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307.CrossRefGoogle Scholar
  15. 15.
    Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy. 2013;110(5):163–72.CrossRefGoogle Scholar
  16. 16.
    Sun ZM, Zhang YZ, Zheng SL, Park Y, Forst RL. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim Acta. 2013;558(8):16–21.CrossRefGoogle Scholar
  17. 17.
    Veerakumar C, Sreekumar A. Phase change material based cold thermal energy storage: materials, techniques and applications—a review. Int J Refrig. 2016;67:271–89.CrossRefGoogle Scholar
  18. 18.
    Silva T, Vicente R, Rodrigues F. Literature review on the use of phase change materials in glazing and shading solutions. Renew Sustain Energy Rev. 2016;53:515–35.CrossRefGoogle Scholar
  19. 19.
    Giro-Paloma J, Martínez M, Cabeza LF, Inés Fernández A. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sustain Energy Rev. 2016;53:1059–75.CrossRefGoogle Scholar
  20. 20.
    Kousksou T, Bruel P, Jamil A, Rhafiki TE, Zeraouli Y. Energy storage: applications and challenges. Sol Energy Mater Sol Cells. 2014;120(1):59–80.CrossRefGoogle Scholar
  21. 21.
    Yang D, Shi SL, Xiong L, Gui HJ, Zhang HR, Chen XF, Wang C, Chen XD. Paraffin/palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:228–34.CrossRefGoogle Scholar
  22. 22.
    Zhang P, Xiao X, Ma ZW. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy. 2016;165:472–510.CrossRefGoogle Scholar
  23. 23.
    Li M, Chen MR, Wu ZS, Liu JX. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manag. 2014;83(7):325–9.CrossRefGoogle Scholar
  24. 24.
    Li Z, Sun WG, Wang G, Wu ZG. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite. Sol Energy Mater Sol Cells. 2014;128(9):447–55.CrossRefGoogle Scholar
  25. 25.
    Guan WM, Li JH, Qian TT, Wang X, Deng Y. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J. 2015;277:56–63.CrossRefGoogle Scholar
  26. 26.
    Tang QQ, Sun J, Yu SM, Wang GC. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. Rsc Adv. 2014;4(69):36584–90.CrossRefGoogle Scholar
  27. 27.
    Li YL, Li JH, Deng Y, Guan WM, Wang X, Qian TT. Preparation of paraffin/porous TiO2, foams with enhanced thermal conductivity as PCM, by covering the TiO2, surface with a carbon layer. Appl Energy. 2016;171:37–45.CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Wang HC, Ling ZY, Fang XM, Zhang ZG. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability. Sol Energy Mater Sol Cells. 2015;140:158–66.CrossRefGoogle Scholar
  29. 29.
    Wu SY, Tong X, Nie CD, Peng QD, Gong GS, Wang ZQ. The effects of various carbon nanofillers on the thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124(1):181–8.CrossRefGoogle Scholar
  30. 30.
    Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag. 2015;95:69–89.CrossRefGoogle Scholar
  31. 31.
    Abbasi S, Zebarjad SM, Baghban SHN, et al. Thermal conductivity of water based nanofluids containing decorated multi walled carbon nanotubes with different amount of TiO2 nanoparticles. Iran J Chem Eng. 2015;12(1):30–41.Google Scholar
  32. 32.
    Jha N, Ramaprabhu S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl Phys. 2009;106(8):1841.CrossRefGoogle Scholar
  33. 33.
    Roy P, Srivastava SK. Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm. 2015;17(41):7801–15.CrossRefGoogle Scholar
  34. 34.
    Tian QW, Jiang FR, Zou RJ, Liu Q, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano. 2011;5(12):9761.CrossRefGoogle Scholar
  35. 35.
    Li XJ, Li YN, Xie F, Li W, Li WJ, Chen MF, Zhao Y. Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system. Rsc Adv. 2015;5(103):84465–70.CrossRefGoogle Scholar
  36. 36.
    Wang XX, Lu MM, Cao WQ, Wen B, Cao MS. Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Mater Lett. 2014;125(24):107–10.CrossRefGoogle Scholar
  37. 37.
    Banerjee S, Wong SS. In situ quantum dot growth on multiwalled carbon nanotubes. J Am Chem Soc. 2003;125(34):10342–50.CrossRefGoogle Scholar
  38. 38.
    Kang XH, Wang B, Zhu L, Zhu H. Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear. 2008;265(1):150–4.CrossRefGoogle Scholar
  39. 39.
    Deng ZT, Cao L, Tang FQ, Zou BS. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J Phys Chem B. 2005;109(35):16671–5.CrossRefGoogle Scholar
  40. 40.
    Chen P, Gao XN, Wang YQ, Xu T, Fang YT, Zhan ZG. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage. Sol Energy Mater Sol Cells. 2016;149:60–5.CrossRefGoogle Scholar
  41. 41.
    Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(5):571–6.CrossRefGoogle Scholar
  42. 42.
    Zhang XG, Wen RL, Huang ZH, Tang C, Huang YT, Liu YG, Fang MH, Wu XW, Min X, Xu YG. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build. 2017;149:463–70.CrossRefGoogle Scholar
  43. 43.
    Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (x GnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells. 2011;95(7):1811–8.CrossRefGoogle Scholar
  44. 44.
    Xu B, Li ZJ. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy. 2014;72(7):371–80.CrossRefGoogle Scholar
  45. 45.
    Wang JF, Xie HQ, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1):39–42.CrossRefGoogle Scholar
  46. 46.
    Wang JF, Xie HQ, Xin Z, Li Y, Chen LF. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84(2):339–44.CrossRefGoogle Scholar
  47. 47.
    Xu B, Wang BY, Zhang CX, Zhou J. Synthesis and light–heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim Acta. 2017;652:77–84.CrossRefGoogle Scholar
  48. 48.
    Warzoha RJ, Fleischer AS. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf. 2014;79:314–23.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina
  3. 3.College of EngineeringZhejiang Agriculture and Forestry UniversityLinanChina

Personalised recommendations