Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 859–867 | Cite as

Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive

  • Yu He
  • Nan Zhang
  • Yanping Yuan
  • Xiaoling Cao
  • Liangliang Sun
  • Yanlin Song
Article

Abstract

In this study, iron oxide nanoparticles (α-Fe2O3) have been firstly used as a nucleating agent, which simultaneously reduces the supercooling degree of sodium acetate trihydrate (SAT) and improves its thermal conductivity. A series of SAT composite phase change materials (PCMs) for potential latent heat thermal energy storage applications were prepared by a ball milling method using carboxymethyl cellulose as a thickening agent and sodium dodecyl sulfonate as a dispersant. In order to investigate the effect of the mass ratio of α-Fe2O3 nanoparticles on the supercooling degree of SAT, various α-Fe2O3 contents (0.2, 0.4, 0.6, 0.8, and 1.0 mass%) were added into the SAT matrix. It was found that the supercooling degree of the SAT composite PCM was reduced to 0 °C at a α-Fe2O3 content of 0.8 mass%. Furthermore, no chemical reaction between SAT and α-Fe2O3 occurred, and the presence of α-Fe2O3 had no effect on the energy storage capability of SAT. The thermal conductivity of the SAT composite PCM was improved by 22.5% due to the addition of 0.8 mass% α-Fe2O3. After 60 melting–freezing cycles, the composite PCMs retained excellent stability with a small reduction in the phase change temperature (0.33 °C) and low latent heat loss rate (0.796%).

Keywords

Phase change material Sodium acetate trihydrate α-Fe2O3 Supercooling Thermal conductivity Cooling curve 

List of symbols

λ

Thermal conductivity (W m−1 K−1)

a

Thermal diffusion coefficient (mm2 s−1)

ρ

Density (g cm−3)

Cp

Specific heat at constant pressure (J kg−1 K−1)

Abbreviations

SAT

Sodium acetate trihydrate

α-Fe2O3

Iron oxide nanoparticles

PCMs

Phase change materials

CMC

Carboxymethyl cellulose

EG

Expanded graphite

SDBS

Sodium dodecyl sulfonate

XRD

X-ray diffraction

DSC

Differential scanning calorimetry

Notes

Acknowledgements

The work is supported by the Fundamental Research Funds for the Central Universities (No: 2682015ZT01), the Youth Science and Technology Innovation Team of Sichuan Province of Building Environment and Energy Efficiency (No: 2015TD0015), the Natural Science Foundation of China (No: 51678488), and National Postdoctoral Program for Innovative Talents (No: BX201600148).

References

  1. 1.
    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.Google Scholar
  2. 2.
    Yuan Y, Gao X, Wu H, Zhang Z, Cao X, Sun L, Yu N. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: method and model development. Energy. 2017;119:817–33.Google Scholar
  3. 3.
    Gao X, Yuan Y, Cao X, Wu H, Zhao X. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: sensitivity analysis and optimization. Process Saf Environ. 2017;107:438–53.Google Scholar
  4. 4.
    Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent heat thermal energy storage systems with solid-liquid phase change materials: a review. Adv Eng Mater. 2018.  https://doi.org/10.1002/adem.201700753.Google Scholar
  5. 5.
    Li G. Energy and exergy performance assessments for latent heat thermal energy storage systems. Renew Sustain Energy Rev. 2015;51:926–54.Google Scholar
  6. 6.
    Li G, Zheng X. Thermal energy storage system integration forms for a sustainable future. Renew Sustain Energy Rev. 2016;62:736–57.Google Scholar
  7. 7.
    Li G. Review of thermal energy storage technologies and experimental investigation of adsorption thermal energy storage for residential application. College Park: University of Maryland; 2013.Google Scholar
  8. 8.
    Li G. Sensible heat thermal storage energy and exergy performance evaluations. Renew Sustain Energy Rev. 2016;53:897–923.Google Scholar
  9. 9.
    Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application. Int J Refrig. 2012;35(8):2053–77.Google Scholar
  10. 10.
    Li G, Hwang Y, Radermacher R, Chun HH. Review of cold storage materials for subzero applications. Energy. 2013;51(2):1–17.Google Scholar
  11. 11.
    Li G, Qian S, Lee H, Hwang Y, Radermacher R. Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application. Energy. 2014;65(2):675–91.Google Scholar
  12. 12.
    Li G, Hwang Y, Radermacher R. Experimental investigation on energy and exergy performance of adsorption cold storage for space cooling application. Int J Refrig. 2014;44(16):23–35.Google Scholar
  13. 13.
    Karaman S, Karaipekli A, San A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95(7):1647–53.Google Scholar
  14. 14.
    Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.Google Scholar
  15. 15.
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112(4):1357–66.Google Scholar
  16. 16.
    Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105(2):229–37.Google Scholar
  17. 17.
    Kim T, France DM, Yu W, Zhao W, Singh D. Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power. Sol Energy. 2014;103(6):438–47.Google Scholar
  18. 18.
    Stritih U, Osterman E, Evliya H, Butala V, Paksoy H. Exploiting solar energy potential through thermal energy storage in Slovenia and Turkey. Renew Sustain Energy Rev. 2013;25(5):442–61.Google Scholar
  19. 19.
    Gu Z, Liu H, Li Y. Thermal energy recovery of air conditioning system-heat recovery system calculation and phase change materials development. Appl Therm Eng. 2004;24(17–18):2511–26.Google Scholar
  20. 20.
    López-Sabirón AM, Royo P, Ferreira VJ, Aranda-Usón A, Ferreira G. Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption. Appl Energy. 2014;135(1):616–24.Google Scholar
  21. 21.
    Cabeza LF, Castell A, Barreneche C, Gracia AD, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011;15(3):1675–95.Google Scholar
  22. 22.
    Tyagi VV, Buddhi D, Kothari R, Tyagi SK. Phase change material (PCM) based thermal management system for cool energy storage application in building: an experimental study. Energy Build. 2012;51(4):248–54.Google Scholar
  23. 23.
    Li G, Liu D, Xie Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC. J Therm Anal Calorim. 2010;102(2):819–26.Google Scholar
  24. 24.
    Tyagi VV, Pandey AK, Kothari R, Tyagi SK. Thermodynamics and performance evaluation of encapsulated PCM-based energy storage systems for heating application in building. J Therm Anal Calorim. 2014;115(1):915–24.Google Scholar
  25. 25.
    Li G, Hwang Y, Radermacher R. Cold thermal energy storage materials and applications toward sustainability. In: Zhang XR, Dincer I, editors. Energy solutions to combat global warming, vol 33. Berlin: Springer; 2016. p. 67–117.Google Scholar
  26. 26.
    Li G, Hwang Y, Radermacher R. Energy storage systems for buildings. In: Gonzalez JE, Krarti M, editors. Handbook of integrated and sustainable buildings equipment and systems, volume I: energy systems. New York: ASME; 2017. p. 74.Google Scholar
  27. 27.
    Zalba B, Maŕın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.Google Scholar
  28. 28.
    Choi JC, Kim SD, Han GY. Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage. Sol Energy Mater Sol Cells. 1996;40(1):71–87.Google Scholar
  29. 29.
    Ryu HW, Woo SW, Shin BC, Kim SD. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells. 1992;27(2):161–72.Google Scholar
  30. 30.
    Mao J, Li J, Peng G, Li J. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate. Int Conf Energy Environ Technol. 2009;1:14–7.Google Scholar
  31. 31.
    Wada T, Kimura F, Yamamoto R. Studies on salt hydrate for latent heat storage, II. Eutectic mixture of pseudo-binary system CH3CO2Na·3H2O–CO(NH2)2. Bull Chem Soc Jpn. 1983;56(4):1223–6.Google Scholar
  32. 32.
    Naumann R, Fanghänel T, Emons HH. Thermoanalytical investigation of sodium acetate trihydrate for application as a latent heat thermal energy storage material. J Therm Anal. 1988;33(3):685–90.Google Scholar
  33. 33.
    Xu JX, Ke XF. Study of phase change property of sodium acetate trihydrate as energy storage material. Mater Rev China. 2007;21:319–21.Google Scholar
  34. 34.
    Hu P, Lu DJ, Fan XY, Zhou X, Chen ZS. Phase change performance of sodium trihydrate with AlN nanoparticles and CMC. Sol Energy Mater Sol Cells. 2011;95(9):2645–9.Google Scholar
  35. 35.
    Cui W, Yuan Y, Sun L, Cao X, Yang X. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy. 2016;99(11):1029–37.Google Scholar
  36. 36.
    Lu DJ, Hu P, Zhao BB, Liu Y, Chen ZS. Study on the performance nanoparticles nucleating agents for sodium acetate trihydrate. J Eng Thermophys. 2012;33(8):1279–82.Google Scholar
  37. 37.
    Ramirez BMLG, Glorieux C, Martinez ESM, Cuautle JJAF. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles. Appl Therm Eng. 2014;62(2):838–44.Google Scholar
  38. 38.
    Mettawee EBS, Assassa GMR. Thermal conductivity enhancement in a latent heat storage system. Sol Energy. 2007;81(7):839–45.Google Scholar
  39. 39.
    Khan MA, Rohatgi PK. Numerical solution to a moving boundary problem in a composite medium. Numer Heat Transf A. 1994;25(2):209–21.Google Scholar
  40. 40.
    Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011;15(1):24–46.Google Scholar
  41. 41.
    Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Heat transfer enhancement in a latent heat storage system. Sol Energy. 1999;65(3):171–80.Google Scholar
  42. 42.
    Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010;84(8):1402–12.Google Scholar
  43. 43.
    Dhaidan NS, Khodadadi JM. Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review. J Renew Sustain Energy. 2017;9(3):171–1702.Google Scholar
  44. 44.
    Huang X, Lin Y, Alva G, Fang G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells. 2017;170:68–76.Google Scholar
  45. 45.
    Li W, Wan H, Lou H, Fu Y, Qin F, He G. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam. Energy. 2017;127:671–9.Google Scholar
  46. 46.
    Tang B, Wei H, Zhao D, Zhang S. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol Energy Mater Sol Cells. 2017;161:183–9.Google Scholar
  47. 47.
    Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.Google Scholar
  48. 48.
    Li WH, Mao JF, Wang LJ, Sui LY. Effect of the additive on thermal conductivity of the phase change material. Adv Mater Res. 2011;399–401:1302–6.Google Scholar
  49. 49.
    Gu X, Qin S, Wu X, Li Y, Liu Y. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material. J Therm Anal Calorim. 2016;125(2):831–8.Google Scholar
  50. 50.
    Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218.PubMedGoogle Scholar
  51. 51.
    Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Antwerp MV, Landmark KJ, Baker JR Jr. Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater. 2010;20(9):1671–8.Google Scholar
  52. 52.
    Faust BC, Hoffmann MR, Bahnemann DW. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of alpha-iron oxide (Fe2O3). J Phys Chem. 1989;93(17):6371–81.Google Scholar
  53. 53.
    Takeda M, Onishi T, Nakakubo S, Fujimoto S. Physical properties of iron-oxide scales on si-containing steels at high temperature. Mater Trans. 2009;50(9):2242–6.Google Scholar
  54. 54.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse MFe2O4 (M = Fe Co, Mn) Nanoparticles. J Am Chem Soc. 2004;126(1):273–9.PubMedGoogle Scholar
  55. 55.
    Aoshima M, Ozaki M, Satoh A. Structural analysis of self-assembled lattice structures composed of cubic hematite particles. Kagaku Kōgaku Ronbunshū. 2010;116(33):17862–71.Google Scholar
  56. 56.
    Huo LH, Li W, Lu LH, Cui HN, Xi SQ, Wang J, Zhao B, Shen YC, Lu ZH. Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film. Chem Mater. 2000;12(3):790–4.Google Scholar
  57. 57.
    Li TX, Wu DL, He F, Wang RZ. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transf. 2017;115:148–57.Google Scholar
  58. 58.
    Zhang N, Yuan Y, Du Y, Cao X, Yuan Y. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage. Energy. 2014;78:950–6.Google Scholar
  59. 59.
    Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124(2):881–8.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Yu He
    • 1
  • Nan Zhang
    • 1
    • 2
  • Yanping Yuan
    • 1
  • Xiaoling Cao
    • 1
  • Liangliang Sun
    • 1
  • Yanlin Song
    • 1
  1. 1.School of Mechanical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.State Key Laboratory of AerodynamicsChina Aerodynamics Research and Development CenterMianyangChina

Personalised recommendations