Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 581–595 | Cite as

Influence of graphene oxide nanosheets on the stability and thermal conductivity of nanofluids

Insights from molecular dynamics simulations
  • Mir-Shahabeddin Izadkhah
  • Hamid Erfan-NiyaEmail author
  • Saeed Zeinali HerisEmail author
Article

Abstract

Many theoretical and experimental studies on heat transfer and flow behavior of nanofluids have been conducted, and the results show that nanofluids significantly enhance heat transfer. However, less attention has been paid to obtain the thermal conductivity of nanofluids and their stability using molecular simulations which are applied by investigators to explain the molecular mechanisms of nanoscale phenomena. In this work, the stability of water–ethylene glycol-based graphene oxide (GO) nanofluids was investigated by classical molecular dynamics simulations in which the kinetic energy, radial distribution function and intensity diagrams were obtained. The obtained results confirmed the stability of nanofluids. Also, the thermal conductivity of nanofluids was studied by reverse non-equilibrium molecular dynamics method at different ratios of water–ethylene glycol as base fluids and various amounts of graphene oxide as nanoparticles. The results show that the thermal conductivity of nanofluids increases with the amount of graphene oxide nanosheets. For example, the thermal conductivity of water–ethylene glycol (75/25%)-based nanofluid containing 3, 4 and 5% of GO nanosheets was increased by 24, 28 and 33%, respectively, at 46.7 °C. Finally, the theoretical models on heat transfer and flow behavior of nanofluids were employed to validate the molecular simulation results. The obtained thermal conductivity results are in good agreement with theoretical models.

Keywords

Nanofluid Graphene oxide Stability Reverse non-equilibrium molecular dynamics Thermal conductivity 

List of symbols

k

Thermal conductivity (W (m K)−1)

kB

Boltzmann constant

keff

Effective thermal conductivity of nanofluid

Lx

Width of simulation box in x-direction

Ly

Width of simulation box in y-direction

LxLy

The area through which heat transport takes place

m

Particle mass

N

Total number of system atoms

rij

Distance between atom i and atom j

rcut

Cutoff radius

t

Simulation time

T

System temperature

U

Potential energy

V

System volume

vc

The velocity of the cold particle

vh

The velocity of the hot particle

Greek symbols

ε

Dielectric constant

εij

Energy parameter in L–J potential

β

The ratio of the nanolayer thickness to the original particle radius

φ

Particle volumetric concentration

\(\sigma_{ij }\)

Length parameter in L–J potential

Subscripts

bfm

Base fluid mixture

eff

Effective

i

Space dimension

j

Space dimension

m

Mixture

nf

Nanofluid

s

Solid nanoparticle

References

  1. 1.
    Dang LX, Annapureddy HVR, Sun X, Thallapally PK, Peter MB. Understanding nanofluid stability through molecular simulation. Chem Phys Lett. 2012;551:115–20.  https://doi.org/10.1016/j.cplett.2012.09.025.Google Scholar
  2. 2.
    Lee S, Choi S-S, Li S, Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.Google Scholar
  3. 3.
    Eastman J, Choi S, Li S, Yu W, Thompson L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.Google Scholar
  4. 4.
    Garg J, Poudel B, Chiesa M, Gordon J, Ma J, Wang J, et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103(7):074301.Google Scholar
  5. 5.
    Liu M-S, Lin MC-C, Tsai C, Wang C-C. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf. 2006;49(17):3028–33.Google Scholar
  6. 6.
    Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol. 2006;29(1):72–7.Google Scholar
  7. 7.
    Sedighi M, Mohebbi A. Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liq. 2014;197:14–22.  https://doi.org/10.1016/j.molliq.2014.04.019.Google Scholar
  8. 8.
    Aref AH, Entezami AA, Erfan-Niya H, Zaminpayma E. Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide. J Mater Sci. 2017;52:2642–60.Google Scholar
  9. 9.
    Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT–SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2017;131:1437–47.Google Scholar
  10. 10.
    Mashaei P, Shahryari M, Madani S. Numerical hydrothermal analysis of water–Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126(2):891–904.Google Scholar
  11. 11.
    Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.Google Scholar
  12. 12.
    Sharma P, Baek I-H, Cho T, Park S, Lee KB. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technol. 2011;208(1):7–19.Google Scholar
  13. 13.
    Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.  https://doi.org/10.1016/S0142-727X(99)00067-3.Google Scholar
  14. 14.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.  https://doi.org/10.1016/S0017-9310(99)00369-5.Google Scholar
  15. 15.
    Tadjarodi A, Zabihi F, Afshar S. Experimental investigation of thermo-physical properties of platelet mesoporous SBA-15 silica particles dispersed in ethylene glycol and water mixture. Ceram Int. 2013;39(7):7649–55.Google Scholar
  16. 16.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ-Fed. 1995;231:99–106.Google Scholar
  17. 17.
    Yu W, Xie H, Li Y, Chen L, Wang Q. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surf A. 2011;380(1):1–5.Google Scholar
  18. 18.
    Krishnamurthy S, Bhattacharya P, Phelan P, Prasher R. Enhanced mass transport in nanofluids. Nano Lett. 2006;6(3):419–23.Google Scholar
  19. 19.
    Wasan DT, Nikolov AD. Spreading of nanofluids on solids. Nature. 2003;423(6936):156–9.Google Scholar
  20. 20.
    Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.Google Scholar
  21. 21.
    Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf. 2004;18(4):481–5.Google Scholar
  22. 22.
    Shaikh S, Lafdi K, Ponnappan R. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: an experimental study. J Appl Phys. 2007;101(6):064302.Google Scholar
  23. 23.
    Yu W, Xie H, Wang X, Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A. 2011;375(10):1323–8.Google Scholar
  24. 24.
    Khoshvaght-Aliabadi M, Eskandari M. Influence of twist length variations on thermal–hydraulic specifications of twisted-tape inserts in presence of Cu–water nanofluid. Exp Therm Fluid Sci. 2015;61:230–40.  https://doi.org/10.1016/j.expthermflusci.2014.11.004.Google Scholar
  25. 25.
    Abbasi FM, Hayat T, Ahmad B. Peristaltic transport of copper–water nanofluid saturating porous medium. Phys E. 2015;67:47–53.  https://doi.org/10.1016/j.physe.2014.11.002.Google Scholar
  26. 26.
    Nayak RK, Bhattacharyya S, Pop I. Numerical study on mixed convection and entropy generation of Cu–water nanofluid in a differentially heated skewed enclosure. Int J Heat Mass Transf. 2015;85:620–34.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.116.Google Scholar
  27. 27.
    Xu H, Gong L, Huang S, Xu M. Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int J Heat Mass Transf. 2015;83:399–407.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.024.Google Scholar
  28. 28.
    Malvandi A, Safaei MR, Kaffash MH, Ganji DD. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J Magn Magn Mater. 2015;382:296–306.  https://doi.org/10.1016/j.jmmm.2015.01.060.Google Scholar
  29. 29.
    Wan Z, Deng J, Li B, Xu Y, Wang X, Tang Y. Thermal performance of a miniature loop heat pipe using water–copper nanofluid. Appl Therm Eng. 2015;78:712–9.  https://doi.org/10.1016/j.applthermaleng.2014.11.010.Google Scholar
  30. 30.
    Azimi M, Mozaffari A. Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm. Eng Sci Technol Int J. 2015;18(1):106–23.  https://doi.org/10.1016/j.jestch.2014.10.002.Google Scholar
  31. 31.
    Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG. Experiments on mixed convection heat transfer and performance evaluation of MWCNT–oil nanofluid flow in horizontal and vertical microfin tubes. Exp Therm Fluid Sci. 2015;61:241–8.  https://doi.org/10.1016/j.expthermflusci.2014.11.005.Google Scholar
  32. 32.
    Malvandi A, Ganji DD. Effects of nanoparticle migration on hydromagnetic mixed convection of alumina/water nanofluid in vertical channels with asymmetric heating. Phys E. 2015;66:181–96.  https://doi.org/10.1016/j.physe.2014.10.023.Google Scholar
  33. 33.
    Samira P, Saeed ZH, Motahare S, Mostafa K. Pressure drop and thermal performance of CuO/ethylene glycol (60%)–water (40%) nanofluid in car radiator. Korean J Chem Eng. 2015;32(4):609–16.Google Scholar
  34. 34.
    Kim S, Yoo H, Kim C. Convective heat transfer of alumina nanofluids in laminar flows through a pipe at the thermal entrance regime. Korean J Chem Eng. 2012;29(10):1321–8.Google Scholar
  35. 35.
    Bahiraei M, Hosseinalipour SM. Accuracy enhancement of thermal dispersion model in prediction of convective heat transfer for nanofluids considering the effects of particle migration. Korean J Chem Eng. 2013;30(8):1552–8.Google Scholar
  36. 36.
    Reddy M, Rao VV, Reddy B, Sarada SN, Ramesh L. Thermal conductivity measurements of ethylene glycol water based TiO2 nanofluids. Nanosci Nanotechnol Lett. 2012;4(1):105–9.Google Scholar
  37. 37.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.Google Scholar
  38. 38.
    Syam Sundar L, Venkata Ramana E, Singh MK, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf. 2014;56:86–95.  https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009.Google Scholar
  39. 39.
    Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.  https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004.Google Scholar
  40. 40.
    Saeedinia M, Akhavan-Behabadi M, Nasr M. Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux. Exp Therm Fluid Sci. 2012;36:158–68.Google Scholar
  41. 41.
    Zafarani-Moattar MT, Majdan-Cegincara R. Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly(ethylene glycol) and water. J Chem Thermodyn. 2012;54:55–67.Google Scholar
  42. 42.
    Peyghambarzadeh S, Hashemabadi S, Hoseini S, Jamnani MS. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int Commun Heat Mass Transf. 2011;38(9):1283–90.Google Scholar
  43. 43.
    Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1):334–44.Google Scholar
  44. 44.
    Meibodi ME, Vafaie-Sefti M, Rashidi AM, Amrollahi A, Tabasi M, Kalal HS. The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids. Int Commun Heat Mass Transf. 2010;37(3):319–23.Google Scholar
  45. 45.
    Demir H, Dalkilic A, Kürekci N, Duangthongsuk W, Wongwises S. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. Int Commun Heat Mass Transf. 2011;38(2):218–28.Google Scholar
  46. 46.
    Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.Google Scholar
  47. 47.
    Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.Google Scholar
  48. 48.
    Sadus RJ. Molecular simulation of fluids. Amsterdam: Elsevier Science; 2002.Google Scholar
  49. 49.
    Hajjar Z, Morad Rashidi A, Ghozatloo A. Enhanced thermal conductivities of graphene oxide nanofluids. Int Commun Heat Mass Transf. 2014;57:128–31.Google Scholar
  50. 50.
    Bhanvase BA, Sarode MR, Putterwar LA, Abdullah KA, Deosarkar MP, Sonawane SH. Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process. 2014;82:123–31.  https://doi.org/10.1016/j.cep.2014.06.009.Google Scholar
  51. 51.
    Reddy MCS, Rao VV. Experimental studies on thermal conductivity of blends of ethylene glycol–water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.  https://doi.org/10.1016/j.icheatmasstransfer.2013.05.009.Google Scholar
  52. 52.
    Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126(3):1455–62.Google Scholar
  53. 53.
    Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, Jamnani MS. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int Commun Heat Mass Transf. 2011;38:1283–90.Google Scholar
  54. 54.
    Esfe MH, Arani AAA, Badi RS, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6744-z.Google Scholar
  55. 55.
    Sankar N, Mathew N, Sobhan C. Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. Int Commun Heat Mass Transf. 2008;35(7):867–72.Google Scholar
  56. 56.
    Sun C, Lu W-Q, Liu J, Bai B. Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int J Heat Mass Transf. 2011;54(11):2560–7.Google Scholar
  57. 57.
    Chang J, Kim H. Molecular dynamic simulation and equation of state of Lennard–Jones chain fluids. Korean J Chem Eng. 1998;15(5):544–51.Google Scholar
  58. 58.
    Erfan-Niya H, Izadkhah S. Molecular insights into structural properties around the threshold of gas hydrate formation. Pet Sci Technol. 2016;34(24):1964–71.Google Scholar
  59. 59.
    Gharebeiglou M, Erfan-Niya H, Izadkhah S. Molecular dynamics simulation study on the structure II clathrate-hydrates of methane + cyclic organic compounds. Pet Sci Technol. 2016;34(14):1226–32.Google Scholar
  60. 60.
    Kang H, Zhang Y, Yang M, Li L. Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid. Phys Lett A. 2012;376(4):521–4.Google Scholar
  61. 61.
    Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. London: Academic Press; 2001.Google Scholar
  62. 62.
    Nosé SI. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 2002;100(1):191–8.Google Scholar
  63. 63.
    Ewald PP. Ewald summation. Ann Phys. 1921;64:253–371.Google Scholar
  64. 64.
    Green HS. The quantum mechanics of assemblies of interacting particles. J Chem Phys. 1951;19(7):955–62.Google Scholar
  65. 65.
    Kubo R. Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn. 1957;12(6):570–86.Google Scholar
  66. 66.
    Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E. 1999;59(5):4894.Google Scholar
  67. 67.
    Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106(14):6082–5.Google Scholar
  68. 68.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.Google Scholar
  69. 69.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug–receptor system. Proteins Struct Funct Bioinform. 1988;4(1):31–47.Google Scholar
  70. 70.
    Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. New York: McGraw-Hill; 1987.Google Scholar
  71. 71.
    Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76(1):637–49.Google Scholar
  72. 72.
    Wasp EJ, Kenny JP, Gandhi RL. Solid–liquid flow: slurry pipeline transportation.[Pumps, valves, mechanical equipment, economics]. Ser. Bulk Mater. Handl., vol 4. Clausthal: Trans. Tech. Publ.; 1977.Google Scholar
  73. 73.
    Yu W, Choi S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5(1–2):167–71.Google Scholar
  74. 74.
    Bruggeman D. Calculation of various physics constants in heterogenous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann Phys. 1935;24(7):636–64.Google Scholar
  75. 75.
    Wang B-X, Zhou L-P, Peng X-F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf. 2003;46(14):2665–72.Google Scholar
  76. 76.
    Shen X, Lin X, Yousefi N, Jia J, Kim J-K. Wrinkling in graphene sheets and graphene oxide papers. Carbon. 2014;66:84–92.Google Scholar
  77. 77.
    Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.Google Scholar
  78. 78.
    Zhang J, Jiang D. Molecular dynamics simulation of mechanical performance of graphene/graphene oxide paper based polymer composites. Carbon. 2014;67:784–91.Google Scholar
  79. 79.
    Mansoori GA. Radial distribution functions and their role in modeling of mixtures behavior. Fluid Phase Equilibr. 1993;87(1):1–22.Google Scholar
  80. 80.
    ASHRAE. ASHRAE Handbook—fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.; 2009.Google Scholar
  81. 81.
    Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71.Google Scholar
  82. 82.
    Han Z. Nanofluids with enhanced thermal transport properties. University of Maryland at College Park: Ph.D. thesis; 2008.Google Scholar
  83. 83.
    Wei Y. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. 2010;21:055705.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum EngineeringUniversity of TabrizTabrizIran

Personalised recommendations