Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 3, pp 1733–1741 | Cite as

A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows

Application to forced convection heat transfer over a horizontal cylinder
  • Hossein Nasiri
  • Mohammad Yaghoub Abdollahzadeh Jamalabadi
  • Reza Sadeghi
  • Mohammad Reza SafaeiEmail author
  • Truong Khang Nguyen
  • Mostafa Safdari Shadloo


Nano-fluidic flow and heat transfer around a horizontal cylinder at Reynolds numbers up to 250 are investigated by using weakly compressible smoothed particle hydrodynamics (WCSPH). To be able to simulate enhanced nanoparticle heat transfer, this manuscript describes for the first time a development that allows conductive and convective heat transfer to be modelled accurately for the Eckert problem using WCSPH. The simulations have been conducted for Pr = 0.01–40 with nanoparticle volumetric concentrations ranging from 0 to 4%. The velocity fields and the Nusselt profiles from the present simulations are in a good agreement with the experimental measurements. The results show that WCSPH is appropriate method for such numerical modelling. Additionally, the results of heat transfer characteristics of nano-fluid flow over a cylinder marked improvements comparing with the base fluids. This improvement is more evident in flows with higher Reynolds numbers and higher particle volume concentration.


Smoothed particle hydrodynamics (SPH) Weakly compressible Nanoparticles Nano-fluid Forced convection 

List of Symbols

Mathematical Characters


Constant in equation of state


Artificial speed of sound


The specific heat at constant pressure


The specific heat at constant volume


Cylinder diameter


Energy of a given particle


Arbitrarily function


Smoothing length or support dimension


Computational domain height


Thermal conductivity of fluid


Computational domain length


Mass of a given particle


Nusselt number


Pressure acting on the particle


Prandtl number


Heat flux terms in energy equation


Distance between the centres of a couple of particles


Position vector identifying the equilibrium state


Reynolds number






Velocity component along x-axis


Velocity component along y-axis


Volume of the particle i


Kernel or smoothing function


The first Cartesian coordinate axis


The second Cartesian coordinate axis

Greek Symbols


Dirac delta function


Stress tensor


Viscosity coefficient


Mass density


Kinematic viscosity


Constant in state equation


Nanoparticle volume fraction


Parameter of artificial viscous heating



Value for reference condition


Cutting radius


Particle of interest


Neighbour particle






Solid nanoparticle


  1. 1.
    Kramers HA. Heat transfer from spheres to flowing media. Physica. 1945;12:61–80.CrossRefGoogle Scholar
  2. 2.
    Perkins H. Forced convection heat transfer from a uniformly heated cylinder. J Heat Transf. 1962;84:257–63.CrossRefGoogle Scholar
  3. 3.
    Perkins H, Leppert G. Local heat-transfer coefficients on a uniformly heated cylinder. Int J Heat Mass Transf. 1964;7:143–58.CrossRefGoogle Scholar
  4. 4.
    Fand RM. Heat transfer by forced convection from a cylinder to water in crossflow. Int J Heat Mass Transf. 1965;8:995–1010.CrossRefGoogle Scholar
  5. 5.
    Zukauskas A, Ziugzda J. Heat transfer of a cylinder in crossflow. Washington: Hemishere Pub; 1985.Google Scholar
  6. 6.
    Whitaker S. Forced convection heat transfer calculations for flow in pipes, past flat plate, single cylinder, and for flow in packed beds and tube bundles. AIChE J. 1972;18:361–71.CrossRefGoogle Scholar
  7. 7.
    Churchill S, Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow. J Heat Transf. 1977;99:300–6.CrossRefGoogle Scholar
  8. 8.
    Sanitjai S, Goldstein R. Heat transfer from a circular cylinder to mixtures of water and ethylene glycol. Int J Heat Mass Transf. 2004;47:4785–94.CrossRefGoogle Scholar
  9. 9.
    Sanitjai S, Goldstein RJ. Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int J Heat Mass Transf. 2004;47:4795–805.CrossRefGoogle Scholar
  10. 10.
    Haeri S, Shrimpton J. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiph Flow. 2012;40:38–55.CrossRefGoogle Scholar
  11. 11.
    Mittal R, Balachandar S. Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys Fluids. 1995;7:1841–65.CrossRefGoogle Scholar
  12. 12.
    Williamson CHK. Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech. 1996;28:477–539.CrossRefGoogle Scholar
  13. 13.
    Singh SP, Mittal S. Energy spectra of flow past a circular cylinder. Int J Comput Fluid Dyn. 2004;18:671–9.CrossRefGoogle Scholar
  14. 14.
    Sharma N, Patankar N. A fast computation technique for the direct numerical simulation of rigid particulate flows. J Comput Phys. 2005;205:439–57.CrossRefGoogle Scholar
  15. 15.
    Yu Z, Shao X. A direct-forcing fictitious domain method for particulate flows. J Comput Phys. 2007;227:292–314.CrossRefGoogle Scholar
  16. 16.
    Apte SV, Martin M, Patankar NA. A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J Comput Phys. 2009;228:2712–38.CrossRefGoogle Scholar
  17. 17.
    Peskin CS. The immersed boundary method. Acta Numer. 2002;11:479–517.CrossRefGoogle Scholar
  18. 18.
    Griffith BE, Hornung RD, McQueen DM, Peskin CS. An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys. 2007;223:10–49.CrossRefGoogle Scholar
  19. 19.
    Roma A, Peskin C, Berger M. An adaptive version of the immersed boundary method. J Comput Phys. 1999;153:509–34.CrossRefGoogle Scholar
  20. 20.
    Luci L. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82:1013–24.CrossRefGoogle Scholar
  21. 21.
    Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Sci Math MNRAS. 1977;181:375–89.CrossRefGoogle Scholar
  22. 22.
    Shadloo MS, Weiss R, Yildiz M, Dalrymple RA. Numerical simulations of the breaking and non-breaking long waves. Int J Offshore Polar Eng. 2015;25(1):1–7.Google Scholar
  23. 23.
    Shadloo MS, Le Touze D, Oger G. Mesh-free Lagrangian modelling of fast flow dynamics, Manuscript No.: 2015-TPC-0750. In: The 25th international ocean and polar engineering conference, June 21–26, 2015, Kona, Big Island.Google Scholar
  24. 24.
    Shadloo MS, Yildiz M. Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics method. Int J Numer Methods Eng. 2011;87:988–1006.CrossRefGoogle Scholar
  25. 25.
    Shadloo MS, Zainali A, Yildiz M. Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput Mech. 2013;51:699–715.CrossRefGoogle Scholar
  26. 26.
    Fatehi R, Shadloo MS, Manzari MT. Numerical investigation of two-phase secondary Kelvin–Helmholtz instability. J Mech Eng Sci. 2014;228:1913–24.CrossRefGoogle Scholar
  27. 27.
    Shadloo MS, Rahmat A, Yildiz M. A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech. 2013;52:693–707.CrossRefGoogle Scholar
  28. 28.
    Abdollahzadeh Jamalabadi MY, Ovosi M. Numerical simulation of interaction of a current with a circular cylinder near a rigid bed. J Appl Math Phys. 2016;4:398–411.CrossRefGoogle Scholar
  29. 29.
    Zainali A, Tofighi N, Shadloo MS, Yildiz M. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng. 2013;254:99–113.CrossRefGoogle Scholar
  30. 30.
    Shamsoddini R, Sefid M, Fatehi R. Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer. J Mech Sci Technol. 2016;30(1):307–16.CrossRefGoogle Scholar
  31. 31.
    Esmaili Sikarudi MA, Nikseresht AH. Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics. Comput Phys Commun. 2016;198:1–11.CrossRefGoogle Scholar
  32. 32.
    Rook R, Yildiz M, Dost S. Modeling transient heat transfer using SPH and implicit time integration. Numer Heat Transf B. 2007;51:1–23.CrossRefGoogle Scholar
  33. 33.
    Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40.CrossRefGoogle Scholar
  34. 34.
    Esfe MH, Karimipour A, Yan WM, Akbari M, Safaei MR, Dahari M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2–O3 nanoparticles. Int J Heat Mass Transf. 2016;88:728–34.CrossRefGoogle Scholar
  35. 35.
    Esfe MH, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, Safaei MR, Dahari M. Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51.CrossRefGoogle Scholar
  36. 36.
    Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A. 2014;402:150–68.CrossRefGoogle Scholar
  37. 37.
    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.CrossRefGoogle Scholar
  38. 38.
    Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2 O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E Low Dimens Syst Nanostruct. 2017;86:146–53.CrossRefGoogle Scholar
  39. 39.
    Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transf Eng. 2017;38(9):853–66.CrossRefGoogle Scholar
  40. 40.
    Safaei MR, Gooarzi M, Akbari OA, Shadloo MS, Dahari M. Electronics cooling, chapter 6. In: Sohel Murshed SM, editor. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. ISBN 978-953-51-2406-1, Print ISBN 978-953-51-2405-4; Published: June 15, 2016.Google Scholar
  41. 41.
    Loya A, Stair JL, Ren G. Simulation and experimental study of rheological properties of CeO2–water nanofluid. Int Nano Lett. 2015;5(1):1–7.CrossRefGoogle Scholar
  42. 42.
    Safaei MR, Shadloo MS, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):1–14.CrossRefGoogle Scholar
  43. 43.
    Rea U, McKrell T, Hu L-W, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf. 2009;52(7–8):2042–8.CrossRefGoogle Scholar
  44. 44.
    Zeinali Heris S, Etemad SG, Nasr Esfahany M. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.CrossRefGoogle Scholar
  45. 45.
    Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S, Renksizbulut M. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under laminar flow regime. Int J Heat Mass Transf. 2011;54(19–20):4376–88.CrossRefGoogle Scholar
  46. 46.
    R Vignjevic, J Campbell, Review of development of the smooth particle hydrodynamics (SPH) method. In: Predictive modeling of dynamic processes. Springer; 2009, p 367–396.Google Scholar
  47. 47.
    Batchelor GK. Introduction to fluid dynamics. Cambridge: Cambridge University Press; 1974.Google Scholar
  48. 48.
    Monaghan JJ. Simulating free surface flows with SPH. J Comput Phys. 1994;110:399–406.CrossRefGoogle Scholar
  49. 49.
    Monaghan JJ. Smoothed particle hydrodynamics. Annu Rev Astron Astrophys. 1992;30:543–74.CrossRefGoogle Scholar
  50. 50.
    Rahmat A, Tofighi N, Shadloo MS, Yildiz M. Numerical simulation of wall bounded and electrically excited Rayleigh Taylor instability using incompressible smoothed particle hydrodynamics. Colloids Surfaces A. 2014;460:60–70.CrossRefGoogle Scholar
  51. 51.
    Shadloo MS, Zainali A, Sadek SH, Yildiz M. Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng. 2011;200(9):1008–20.CrossRefGoogle Scholar
  52. 52.
    Fatehi R, Manzari MT. Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl. 2011;61(2):482–98.CrossRefGoogle Scholar
  53. 53.
    Liu GR, Liu MB. Smoothed particle hydrodynamics: a meshfree particle method. Singapore: World Scientific Publishing Co Pte Ltd; 2003. ISBN 978-981-238-456-0.CrossRefGoogle Scholar
  54. 54.
    Karimipour Arash. A novel case study for thermal radiation through a nanofluid as a semitransparent medium via discrete ordinates method to consider the absorption and scattering of nanoparticles along the radiation beams coupled with natural convection. Int Commun Heat Mass Transf. 2017;87:256–69.CrossRefGoogle Scholar
  55. 55.
    Ghasemi S, Karimipour A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng. 2018;128:189–97.CrossRefGoogle Scholar
  56. 56.
    Aramesh M, Pourfayaz F, Kasaeian A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol Energy. 2017;157:869–79.CrossRefGoogle Scholar
  57. 57.
    Kasaeian A, Pourfayaz F, Khodabandeh E, Yan WM. Experimental studies on the applications of PCMs and Nano-PCMs in buildings: a critical review. Energy Build. 2017;154:96–112.CrossRefGoogle Scholar
  58. 58.
    Eckert ERG, Soehngen E. Distribution of heat transfer coefficients around circular cylinders in cross flow at Reynolds numbers from 20 to 500. J Heat Transf. 1952;74:343–7.Google Scholar
  59. 59.
    Shadloo MS, Zainali A, Yildiz M, Suleman A. A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Method Eng. 2012;89(8):939–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Hossein Nasiri
    • 1
  • Mohammad Yaghoub Abdollahzadeh Jamalabadi
    • 2
  • Reza Sadeghi
    • 3
  • Mohammad Reza Safaei
    • 4
    • 5
    Email author
  • Truong Khang Nguyen
    • 4
    • 5
  • Mostafa Safdari Shadloo
    • 6
  1. 1.Department of Mechanical EngineeringDaneshpajoohan Higher Education InstituteIsfahanIran
  2. 2.Department of Mechanical, Robotics and Energy EngineeringDongguk UniversitySeoulRepublic of Korea
  3. 3.Department of Mechanical EngineeringUniversity of TehranTehranIran
  4. 4.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.CORIA-UMR 6614, Normandy University, CNRS-University & INSA of RouenRouenFrance

Personalised recommendations