Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1409–1418 | Cite as

Thermal and kinetics studies of primary, secondary and tertiary alkanolammonium salts of 4-nitrobenzoic acid

  • Manuela Crisan
  • Gabriela Vlase
  • Elisabeta I. Szerb
  • Titus Vlase
Article

Abstract

Nitrobenzoic derivatives are chemically and biologically significant molecules, recently listed as active ingredients in the medical-pharmaceutic field. A series of p-nitrobenzoic acid salts were synthesized with different substituted alkanolamine (ethanolamine, diethanolamine and triethanolamine) via proton exchange reactions and characterized. Fourier transform infrared spectroscopy—FTIR-UATR, and a combination of thermal techniques (differential scanning calorimetry—DSC, and thermogravimetric analysis—TGA) with hot-stage microscopy were used in order to demonstrate the formation of salts and to analyse thermal stability and phase transitions. The aim of this study is to investigate thermal behaviour and kinetics of this class of compounds, previously poorly examined, which offers interesting phase transformations in the solid state. DSC indicated that the synthesized salts had very distinct melting points. Diethanolamine and triethanolamine used as cation in the formation of multicomponent systems with 4-nitrobenzoic acid lead to melting points near 100 °C, compared to compound based on ethanolamine. Calorimetric and thermogravimetric data indicate the absence of solvate forms in all studied compounds. TGA and kinetic experiments allowed the calculation of the activation energy, revealing that triethanolammonium salt has the highest stability in this studied series of compounds.

Keywords

Alkanolammonium salts of 4-nitrobenzoic acid Thermal stability TG/DTG DSC Non-isothermal kinetics Modified NPK method Protic alkanolammonium ionic liquids (APILs) 

Notes

Acknowledgements

Authors thank the bilateral Moldova-Romanian project 16.80013.5007.04/Ro and the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project PN3-P3-217/24 BM/19.09.2016

References

  1. 1.
    Ono N. The nitro group in organic synthesis. New York: Wiley; 2002.Google Scholar
  2. 2.
    Zaragoza Dörwald F. Nitro compounds. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA; 2012.Google Scholar
  3. 3.
    Zollinger H. Color chemistry. New York: VCH Publishers; 1987.Google Scholar
  4. 4.
    Gasiewicz TA. Nitro compounds and related phenolic pesticides. In: Hayes WR, Laws ER, editors. Handbook of pesticide toxicology. Cambridge: Academic Press Inc.; 1991. p. 1191–270.Google Scholar
  5. 5.
    Straus MJ. The nitroaromatic group in drug design. Pharmacology and toxicology (for nonpharmacologists). Ind Eng Chem Prod Res Dev. 1979;18:158–66.CrossRefGoogle Scholar
  6. 6.
    Walsh JS, Miwa GT. Bioactivation of drugs: risk and drug design. Annu Rev Pharmacol Toxicol. 2011;51:145–67.CrossRefGoogle Scholar
  7. 7.
    Truong DD. Tolcapone: review of its pharmacology and use as adjunctive therapy in patients with Parkinson’s disease. Clin Interv Aging. 2009;4:109–13.CrossRefGoogle Scholar
  8. 8.
    Sorkin EM, Clissold SP, Brogden RN. Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 1985;30:182–274.CrossRefGoogle Scholar
  9. 9.
    Mattila MAK, Larni HM. Flunitrazepam: a review of its pharmacological properties and therapeutic use. Drugs. 1980;20:353–74.CrossRefGoogle Scholar
  10. 10.
    Agarwal A, Dhole TN, Sharma YK. Evaluation of p-nitro benzoic acid (pnb) inhibition test to differentiate Mycobacterium tuberculosis complex from non-tuberculous mycobacteria using microscopic observation of drug susceptibility (MODS) methodology. Indian J Tuberc. 2014;61:232–5.Google Scholar
  11. 11.
    Shakoor S, Ahsan T, Jabeen K, Raza M, Hasan R. Use of p-nitrobenzoic acid in 7H10 agar for identification of Mycobacterium tuberculosis complex: a field study. Int J Tuberc Lung Dis. 2010;14:1644–6.Google Scholar
  12. 12.
    Dinesh Kumar G, Amirthaganesan G, Sethuram M. Synthesis, spectral, structural, thermal and optical studies on dimethylammonium 4-nitrobenzoate—an organic charge transfer complex. Optik. 2016;127:336–40.CrossRefGoogle Scholar
  13. 13.
    Arumanayagam T, Murugakoothan P. Growth, linear and nonlinear optical studies on guanidinium 4-nitrobenzoate (GuNB): an organic NLO material. Optik. 2012;123:1153–6.CrossRefGoogle Scholar
  14. 14.
    Sasikala V, Sajan D, Job Sabu K, Arumanayagam T, Murugakoothan P. Electronic structure, vibrational spectral and intervening orbital interactions studies of NLO material: guanidinium 4-nitrobenzoate. Spectrochim Acta A Mol Biomol Spectrosc. 2015;139:555–72.CrossRefGoogle Scholar
  15. 15.
    Selvakumar E, Anandha babu G, Ramasamy P, Rajnikant, Murugesan V, Chandramohan A. Synthesis, growth and spectroscopic investigation of an organic molecular charge transfer crystal: 8-hydroxy quinolinium 4-nitrobenzoate 4-nitrobenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:259–63.CrossRefGoogle Scholar
  16. 16.
    Hernández-Paredes J, Terán-Reprieto ME, Esparza-Ponce HE, Sotelo-Mundo RR, Hernández-Negrete O, Reyes-Márquez V, Álvarez-Ramos ME. Growth and characterization of l-histidinium-4-nitrobenzoate (1:1) multi-component molecular complex. J Mol Struct. 2015;1102:323–30.CrossRefGoogle Scholar
  17. 17.
    Shkir M, AlFaify S, Abbas H, Muhammad S. First principal studies of spectroscopic (IR and Raman, UV–visible), molecular structure, linear and nonlinear optical properties of l-arginine p-nitrobenzoate monohydrate (LANB): a new non-centrosymmetric material. Spectrochim Acta A Mol Biomol Spectrosc. 2015;147:84–92.CrossRefGoogle Scholar
  18. 18.
    Kavitha CN, Kaur M, Anderson BJ, Jasinski JP, Yathirajan HS. 1-Piperonylpiperazinium 4-nitrobenzoate monohydrate. Acta Crystallogr Sect E: Struct Rep Online. 2014;70:o270–1.CrossRefGoogle Scholar
  19. 19.
    Balasubramani K, Fun H-K. 2,3-Diamino-pyridinium 4-nitro-benzoate. Acta Crystallogr Sect E: Struct Rep Online. 2009;65:o1511–2.CrossRefGoogle Scholar
  20. 20.
    Srinivasan BR, Sawant JV, Raghavaiah P. Synthesis, spectroscopy, thermal studies and supramolecular structures of two new alkali-earth 4-nitrobenzoate complexes containing coordinated imidazole. J Chem Sci. 2007;119:11–20.CrossRefGoogle Scholar
  21. 21.
    Chumakov Y, Simonov Y, Grozav M, Crisan M, Bocelli G, Yakovenko A, Lyubetsky D. Hydrogen-bonding network in the organic salts of 4-nitrobenzoic acid. Cent Eur J Chem. 2006;4:458–75.Google Scholar
  22. 22.
    Crisan M, Bourosh P, Chumakov Y, Petric M, Ilia G. Supramolecular assembly and ab initio quantum chemical calculations of 2-hydroxyethylammonium salts of para-substituted benzoic acids. Cryst Growth Des. 2013;13:143–54.CrossRefGoogle Scholar
  23. 23.
    Chicu SA, Grozav M, Kurunczi L, Crisan M. SAR for amine salts of carboxylic acids to Hydractinia echinata. Rev Chim. 2008;59:582–7.Google Scholar
  24. 24.
    Crisan ME, Bourosh P, Maffei ME, Forni A, Pieraccini S, Sironi M, Chumakov YM. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid. PLoS ONE. 2014;9:e101892.CrossRefGoogle Scholar
  25. 25.
    Crisan M, Grozav M, Kurunczi L, Ilia G, Bertea C. Inhibitory effects of some synthetic monoethanolaminesalts of para-substituted benzoic acids and corresponding benzoic acids on cucumber seed germination. J Plant Interact. 2007;2:53–61.CrossRefGoogle Scholar
  26. 26.
    Crisan M, Grozav M, Bertea C. Arabidopsis thaliana seed germination and early seedling growth are inhibited by monoethanolamine salts of parahalogenated benzoic acids. J Plant Interact. 2009;4:271–7.CrossRefGoogle Scholar
  27. 27.
    Cruz-Cabeza AJ. Acid–base crystalline complexes and the pK a rule. CrystEngComm. 2012;4:6362–5.CrossRefGoogle Scholar
  28. 28.
    PubChem Compound Database https://www.ncbi.nlm.nih.gov/pccompound.
  29. 29.
    Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.Google Scholar
  30. 30.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Boston: Cengage Learning, Brooks/Cole; 2009.Google Scholar
  31. 31.
    Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.CrossRefGoogle Scholar
  32. 32.
    Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.CrossRefGoogle Scholar
  33. 33.
    Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.CrossRefGoogle Scholar
  34. 34.
    Vlase T, Vlase G, Doca N, Ilia G, Fulias A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.CrossRefGoogle Scholar
  35. 35.
    Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.Google Scholar
  36. 36.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  37. 37.
    Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  38. 38.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Research report Chiba Institute of Technology. Sci Technol. 1971;16:22–31.Google Scholar
  39. 39.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  40. 40.
    Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:35–638.CrossRefGoogle Scholar
  41. 41.
    Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113:1379–85.CrossRefGoogle Scholar
  42. 42.
    Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid state degradation of transitional coordinative compounds containing functionalized 1,2,4 -triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.CrossRefGoogle Scholar
  43. 43.
    Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.CrossRefGoogle Scholar
  44. 44.
    Ledeţi I, Vlase G, Vlase T, Fuliaş A, Şuta LM. Comparative thermal stability of two similar-structure hypolipidemic agents—Simvastatin and Lovastatin—kinetic study. J Therm Anal Calorim. 2016;125:769–75.CrossRefGoogle Scholar
  45. 45.
    Ledeţi I, Bercean V, Vlase G, Vlase T, Ledeţi A, Şuta L. Betulonic acid. Study of thermal degradation by kinetic approach. J Therm Anal Calorim. 2016;125:785–91.CrossRefGoogle Scholar
  46. 46.
    Fuliaş A, Ledeti I, Vlase G, Vlase T, Şoica C, Dehelean C, Oprean C, Bojin F, Şuta M, Bercean V, Avram S. Thermal degradation, kinetic analysis, and apoptosis induction in human melanoma for oleanolic and ursolic acids. J Therm Anal Calorim. 2016;125:759–68.CrossRefGoogle Scholar
  47. 47.
    Vlase G, Modra D, Albu P, Ceban I, Bolcu C, Vlase T. Thermal behavior of saturated phthalic-type polyesters. Influence of the branching polyol. J Therm Anal Calorim. 2017;127:409–14.CrossRefGoogle Scholar
  48. 48.
    Albu P, Doca SC, Anghel A, Vlase G, Vlase T. Thermal behavior of sodium alendronate. A kinetic study under non-isothermal conditions. J Therm Anal Calorim. 2017;127:571–6.CrossRefGoogle Scholar
  49. 49.
    Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Dordrecht: Kluwer; 2003. p. 91–109.CrossRefGoogle Scholar
  50. 50.
    Śestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Chemistry Timisoara of Romanian AcademyTimisoaraRomania
  2. 2.Research Center: Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimisoaraRomania

Personalised recommendations