Advertisement

Effect of torrefaction on thermal behavior and fuel properties of Eucalyptus grandis macro-particulates

  • Edgar A. Silveira
  • Luiz Gustavo Oliveira Galvão
  • Isabella A. Sá
  • Bruno F. Silva
  • Lucélia Macedo
  • Patrick Rousset
  • Armando Caldeira-Pires
Article
  • 23 Downloads

Abstract

Considered as a carbon-neutral fuel from a climate change perspective and the most common renewable resource, biomass needs an energetic conversion process to replace more conventional energy sources. Torrefaction is a thermal modification process used to improve biomass as solid fuel. In this study, macro-particles of Eucalyptus grandis were investigated under an oxidizing atmosphere (10% O2). The aim was to evaluate the effect of the temperature (230, 250, 270 and 290 °C) and heating rates (3, 5 and 7 °C min−1) on 3 × 3 × 3 cm samples by the assessment of the dynamic solid yield and its derivative curve, proximate analysis as well as energy content. The solid yield decreases with increasing temperature showing a linear relationship (R2 = 0.97) for light and mild torrefaction and more aggressive behavior for severe torrefaction (280 and 290 °C) with degradation varying from 6.7 to 34.8% and a higher heating value enhancement varying from 3.4% (230 °C) to 24.3% (290 °C). The approach followed allows a characterization of biomass samples, thermal behaviors dynamics as well as the torrefied final product showing the impact of temperature, heating rate and residence time.

Keywords

Torrefaction Eucalyptus grandis Oxidizing atmosphere TG Solid yield Energy yield 

Notes

Acknowledgements

The research presented was supported by Brazilian National Council for Scientific and Technological Development (CNPq), Brazilian Foundation for the Coordination and Improvement of Higher Level or Education Personnel (Capes) and Brazilian Forest Products Laboratory.

References

  1. 1.
    EPE. Brazilian Energy Balance 2016, Year 2015, Empres. Pesqui. Energética – EPE, p. 292 (2016). https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2016.pdf. Accessed 8 June 2017.
  2. 2.
    Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev. 2015;44:847–66.  https://doi.org/10.1016/j.rser.2014.12.039.CrossRefGoogle Scholar
  3. 3.
    Chen WH, Lu KM, Tsai CM. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy. 2012;100:318–25.  https://doi.org/10.1016/j.apenergy.2012.05.056.CrossRefGoogle Scholar
  4. 4.
    van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62.  https://doi.org/10.1016/j.biombioe.2011.06.023.Google Scholar
  5. 5.
    Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD. A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol. 2011;7:384–401.  https://doi.org/10.1089/ind.2011.0014.CrossRefGoogle Scholar
  6. 6.
    Almeida G, Brito JO, Perré P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol. 2010;101:9778–84.  https://doi.org/10.1016/j.biortech.2010.07.026.CrossRefGoogle Scholar
  7. 7.
    Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol. 2008;89:169–75.  https://doi.org/10.1016/j.fuproc.2007.09.002.CrossRefGoogle Scholar
  8. 8.
    Bergman PCA, Kiel JHA. Torrefaction for biomass upgrading. In: Proceedings of 14th European biomass conference, Paris, France, p. 17–21 (2005).Google Scholar
  9. 9.
    Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol. 2015;177:355–60.  https://doi.org/10.1016/j.biortech.2014.10.113.CrossRefGoogle Scholar
  10. 10.
    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, Sokhansanj S. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–25.  https://doi.org/10.1016/j.biortech.2012.09.092.CrossRefGoogle Scholar
  11. 11.
    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis. 2012;96:86–91.  https://doi.org/10.1016/j.jaap.2012.03.009.CrossRefGoogle Scholar
  12. 12.
    Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol. 2008;89:169–75.  https://doi.org/10.1016/j.fuproc.2007.09.002.CrossRefGoogle Scholar
  13. 13.
    Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol. 2012;123:98–105.  https://doi.org/10.1016/j.biortech.2012.07.096.CrossRefGoogle Scholar
  14. 14.
    Rodrigues TO, Rousset PLA. Effects of torrefction on energy properties of Eucalyptus grandis wood. Cerne. 2009;15:446–52.  https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
  15. 15.
    Arteaga-Pérez LE, Segura C, Espinoza D, Radovic LR, Jiménez R. Torrefaction of Pinus radiata and Eucalyptus globulus: a combined experimental and modeling approach to process synthesis. Energy Sustain Dev. 2015;29:13–23.  https://doi.org/10.1016/j.esd.2015.08.004.CrossRefGoogle Scholar
  16. 16.
    Arteaga-Pérez LE, Segura C, Bustamante-García V, Cápiro OG, Jiménez R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy. 2015;93:1731–41.  https://doi.org/10.1016/j.energy.2015.10.007.CrossRefGoogle Scholar
  17. 17.
    Pétrissans A, Younsi R, Chaouch M, Gérardin P, Pétrissans M. Experimental and numerical analysis of wood thermodegradation Mass loss kinetics. J Therm Anal Calorim. 2012;109:907–14.  https://doi.org/10.1007/s10973-011-1805-1.CrossRefGoogle Scholar
  18. 18.
    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Maréchal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67.  https://doi.org/10.1016/j.energy.2014.03.086.CrossRefGoogle Scholar
  19. 19.
    Bach QV, Chen WH, Chu YS, Skreiberg Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour Technol. 2016;215:239–46.  https://doi.org/10.1016/j.biortech.2016.04.009.CrossRefGoogle Scholar
  20. 20.
    Bates RB, Ghoniem AF. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour Technol. 2013;134:331–40.  https://doi.org/10.1016/j.biortech.2013.01.158.CrossRefGoogle Scholar
  21. 21.
    Bates RB, Ghoniem AF. Modeling kinetics-transport interactions during biomass torrefaction: the effects of temperature, particle size, and moisture content. Fuel. 2014;137:216–29.  https://doi.org/10.1016/j.fuel.2014.07.047.CrossRefGoogle Scholar
  22. 22.
    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Maréchal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67.  https://doi.org/10.1016/j.energy.2014.03.086.CrossRefGoogle Scholar
  23. 23.
    Bates RB, Ghoniem AF. Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Bioresour Technol. 2012;124:460–9.  https://doi.org/10.1016/j.biortech.2012.07.018.CrossRefGoogle Scholar
  24. 24.
    Abraf. Anuário Estatístico-Associação Brasileira de Produtores de Florestas Plantadas, Anuário Estatístico ABRAF, p. 146 (2013). http://www.ipef.br/estatisticas/relatorios/anuario-abraf13-br.pdf. Accessed 22 Oct 2016.
  25. 25.
    Balme Q, Lemont F, Rousset F, Sedan J, Charvin P, Bondroit J, Marias F. Design, calibration and testing of a new macro-thermogravimetric analyzer. J Therm Anal Calorim. 2018;132:13–5.  https://doi.org/10.1007/s10973-018-7118-x.CrossRefGoogle Scholar
  26. 26.
    Oliveira T. Efeitos da torrefação no condicionamento de biomassa para fins energéticos. Brasília: Univ. Brasília; 2009. p. 71.Google Scholar
  27. 27.
    Galvão LGO. Efeitos da acústica e da temperatura no processo de torrefação e nas propriedades energéticas da madeira de Eucalypitus grandis. Brasília: University of Brasília; 2018. http://repositorio.unb.br/handle/10482/32315. Accessed 6 May 2018.
  28. 28.
    Candelier K, Thevenon MF, Petrissans A, Dumarcay S, Gerardin P, Petrissans M. Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci. 2016;73:571–83.  https://doi.org/10.1007/s13595-016-0541-x.CrossRefGoogle Scholar
  29. 29.
    Esteves BM, Pereira HM. Wood modification by heat treatment: a review. BioResources. 2009;4:370–404.Google Scholar
  30. 30.
    Zhao Z, Ma Q, Mu J, Yi S, He Z. Numerical analysis of Eucalyptus grandis x E. urophylla heat-treatment: a dynamically detecting method of mass loss during the process. Results Phys. 2017;7:5–15.  https://doi.org/10.1016/j.rinp.2016.11.059.CrossRefGoogle Scholar
  31. 31.
    Chaouch M. Effet de l’intensité du traitement sur la composition élémentaire et la durabilité du bois traité thermiquement : développement d’un marqueur de prédiction de la résistance aux champignons basidiomycètes Soutenue. Nancy: Université Henri Poincaré Spécialité; 2011.Google Scholar
  32. 32.
    Silveira EA, Lin BJ, Colin B, Chaouch M, Pétrissans A, Rousset P, Chen WH, Pétrissans M. Heat treatment kinetics using three-stage approach for sustainable wood material production. Ind Crops Prod. 2018;124:563–71.  https://doi.org/10.1016/j.indcrop.2018.07.045.CrossRefGoogle Scholar
  33. 33.
    Silveira EA, de Morais MVG, Rousset P, Caldeira-Pires A, Pétrissans A, Galvão LGO. Coupling of an acoustic emissions system to a laboratory torrefaction reactor. J Anal Appl Pyrolysis. 2017;129:29–36.  https://doi.org/10.1016/j.jaap.2017.12.008.CrossRefGoogle Scholar
  34. 34.
    Park SW, Jang CH, Baek KR, Yang JK. Torrefaction and low-temperature carbonization of woody biomass: evaluation of fuel characteristics of the products. Energy. 2012;45:676–85.  https://doi.org/10.1016/j.energy.2012.07.024.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of BrasíliaBrasíliaBrazil
  2. 2.Forest Products Laboratory (LPF)Brazilian Forest Service (SFB)BrasíliaBrazil
  3. 3.BiowooebUniv Montpellier, CiradMontpellierFrance
  4. 4.Joint Graduate School of Energy and Environment - Center of Excellence on Energy Technology and EnvironmentKMUTTBangkokThailand

Personalised recommendations